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A
bstract

Partitioning
is

a
com

m
only

used
m

ethod
in

phylogenetics
that

aim
s

to
accom

m
odate

variation
in

substitution
patterns

am
ong

sites.D
espite

its
popularity,there

have
been

few
system

atic
studies

of
its

effects
on

phylogenetic
inference,and

there
have

been
no

studies
that

com
pare

the
effects

of
different

approaches
to

partitioning
across

m
any

em
piricaldata

sets.In
this

study,w
e

applied
four

com
m

only
used

approaches
to

partitioning
to

each
of34

em
piricaldata

sets,and
then

com
pared

the
resulting

tree
topologies,branch-lengths,and

bootstrap
support

estim
ated

using
each

approach.W
e

fi
nd

that
the

choice
of

partitioning
schem

e
often

affects
tree

topology,
particularly

w
hen

partitioning
is

om
itted.

M
ost

notably,
w

e
fi

nd
occasional

instances
w

here
the

use
of

a
suboptim

al
partitioning

schem
e

produces
highly

supported
but

incorrect
nodes

in
the

tree.
B

ranch-lengths
and

bootstrap
support

are
also

affected
by

the
choice

of
partitioning

schem
e,som

etim
es

dram
atically

so.W
e

discuss
the

reasons
for

these
effects

and
m

ake
som

e
suggestions

for
best

practice.

K
ey

w
ords:partitioning,tree

topology,tree
inference,m

olecular
evolution.

Introduction
Statisticalfram

ew
orks

forphylogenetic
tree

inference,such
as

Bayesian
and

M
axim

um
Likelihood

(M
L)

approaches,
use

param
etric

m
odels

to
account

forchanges
in

D
N

A
sequences

over
tim

e.A
n

overly
sim

plistic
m

odelm
ay

failto
adequately

account
for

certain
aspects

of
the

evolutionary
process,and

can
lim

it
the

accuracy
ofthe

inferences
m

ade
from

the
data.

A
m

ore
com

plex
m

odel
m

ay
overfit

the
data

and
result

in
sim

ilarly
com

prom
ised

phylogenic
inferences

(Sullivan
and

Joyce
2005).A

s
the

choice
ofa

m
odelofm

olecular
evolution

can
affect

the
results

ofa
phylogenetic

analysis
(Sullivan

and
Sw

offord
1997;Buckley

and
C

unningham
2002;K

elchner
and

Thom
as

2007),
the

process
of

m
odel

selection
can

be
im

portant.
A

s
phylogenetic

data
sets

have
increased

in
size,it

has
becom

e
increasingly

im
portant

for
m

odels
of

m
olecular

evolution
to

adequately
account

for
variation

in
rates

and
patterns

of
substitution

am
ong

sites
(Buckley

et
al.2001;

Brow
n

and
Lem

m
on

2007).T
he

m
ost

com
m

on
approach

to
incorporating

this
heterogeneity

is
to

partition
a

given
sequence

alignm
ent

into
groups

of
sites

that
are

assum
ed

to
have

evolved
under

the
sam

e
m

odel
(N

ylander
et

al.
2004;

Brandley
et

al.
2005;

Blair
and

M
urphy

2011).
T

raditionally,this
is

perform
ed

by
using

a
prioriknow

ledge
of

the
data

set,for
exam

ple
by

assigning
an

independent
m

odelto
each

codon
position

in
each

protein-coding
gene

(Shapiro
et

al.2006;Lanfear
et

al.2012).V
arious

other
so-

lutions
have

been
proposed,including

m
ixture

m
odels

and
som

e
related

Bayesian
m

ethods
(H

uelsenbeck
and

N
ielsen

1999;K
rajew

ski
et

al.1999;Y
ang

et
al.2000;Lartillot

and
Philippe

2004;N
ylander

et
al.2004;Pageland

M
eade

2004;

W
u

et
al.

2013).In
the

general
m

ixture
m

odel
approach,

each
site

in
an

alignm
ent

is
given

a
probability

of
being

assigned
to

each
m

odel.T
raditionalpartitioning,therefore,

can
be

view
ed

as
a

special
case

w
here

the
probability

of
assignm

entofa
site

to
a

m
odelis

sim
ply

reduced
to

either0
or

1.A
recent

Bayesian
approach

to
the

partitioning
prob-

lem
(W

u
et

al.2013)
em

ployed
a

D
irichlet

process
m

ixture
m

odel
to

jointly
estim

ate
both

the
num

ber
of

partitions
and

the
assignm

ent
of

sites
to

those
partitions.

O
f

these
m

ethods,traditional
partitioning

rem
ains

by
far

the
m

ost
w

idely
used,and

is
currently

the
only

m
ethod

that
is

feasi-
ble

for
the

large
m

ultilocus
alignm

ents
that

are
increasingly

com
m

on.In
this

article,w
e

focus
on

assessing
the

effects
of

various
approaches

to
traditionalpartitioning

on
phyloge-

netic
inference.

H
aving

defined
groups

of
hom

ogeneous
sites,

or
data

blocks,based
on

a
prioriknow

ledge
of

the
data,the

biggest
challenge

in
traditionalpartitioned

analysis
is

to
choose

the
best

partitioning
schem

e
for

the
data

at
hand.Researchers

typically
take

eitheran
ad

hoc
oralgorithm

ic
approach

to
this

problem
.In

the
ad

hoc
approach,one

m
ay

assess
a

handfulof
alternative

w
ays

in
w

hich
data

blocks
can

be
further

com
-

bined
into

hom
ogenous

groups
(partitioning

schem
es)

and
select

the
best-fit

partitioning
schem

e
for

subsequent
phylo-

genetic
analyses.

In
the

algorithm
ic

approach,
a

variety
of

autom
ated

m
ethods

can
be

used
to

heuristically
evaluate

the
space

of
all

possible
partitioning

schem
es

containing
the

initial
data

blocks
(Lanfear

et
al.

2012,
2014).

In
both

cases,
statistical

m
odel

evaluation
m

etrics
such

as
the

cor-
rected

A
kaike

Inform
ation

C
riterion

(A
IC

c)
or

the
Bayesian

Inform
ation

C
riterion

(BIC
)

m
ay

be
used

to
select

the

!
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Topology Comparison
In what follows, we use the topology estimated under the
OptBIC partitioning scheme as a reference against which to
compare the other three topologies. This decision is arbitrary
in the sense that we could use any of the four trees as a
reference, although there is some evidence that the BIC is
one of the best-performing metrics for model selection in
phylogenetics (Minin et al. 2003; Abdo et al. 2005).

Tree topologies differed considerably depending on the
partitioning scheme used to estimate them. When compared
with the trees estimated using the OptBIC scheme, different
tree topologies were estimated in 31/34 data sets using the
Adhocone scheme, 19/34 data sets using the Adhocfeat

scheme, and 18/34 data sets using the OptAICc scheme.
Below, we investigate these results further by comparing

the trees using a range of different metrics, and by analyzing
the nodes that were present in some trees but not others.

For each data set, we calculated the distance between the
tree estimated with the OptBIC scheme and the trees esti-
mated with the other three schemes using three metrics: The
Robison–Foulds metric (RF) (Robinson and Foulds 1981), the
Matching Split distance metric (MS) (Bogdanowicz and Giaro
2012), and the Path Difference metric (PD) (Steel and Penny
1993). All three metrics were normalized relative to the mean
distance between two randomly generated trees of the same
size, such that a result of 0 implies that the two topologies are
identical, whereas a result of 1 implies that the two topologies
are at least as different as two random topologies
(Bogdanowicz et al. 2012). This normalization allows the met-
rics to be meaningfully compared across different data sets.

Table 1. Details of the 34 Data Sets Used in This Study.

Data Set Data
Typea

Taxa Sites Data
Blocks

Clade (Latin) Clade (English) Study Ref. Data Set Ref.

Anderson_2013 M 145 3,037 4 Loliginidae Pencil squids Anderson et al. (2014) Anderson et al. (2013)

Bergsten_2013 M,N 38 2,111 8 Dytiscidae Diving beetles Bergsten et al. (2013a) Bergsten et al. (2013b)

Broughton_2013 M,N 61 19,997 61 Osteichthyes Bony fishes Broughton et al. (2013b) Broughton et al. (2013a)

Brown_2012 N 41 1,665 7 Ptychozoon Asian geckos Brown et al. (2012b) Brown et al. (2012a)

Caterino_2001 M,N 37 3,228 9 Papilionidae Butterflies Caterino et al. (2001) Kuo et al. (2001)

Cognato_2001 M,N 44 1,896 7 Scolytinae Bark beetles Cognato and Vogler (2001b) Cognato and Vogler (2001a)

Day_2013 M,N 152 3,586 11 Synodontis African catfish Day, Peart, Brown,
Friel, et al. (2013)

Day, Peart, Brown,
Bills, et al. (2013)

Devitt_2013 M 69 823 4 Ensatina Salamander Devitt et al. (2013b) Devitt et al. (2013a)

Dornburg_2012 M,N 44 5,919 21 Holocentridae Squirrel fishes Dornburg et al. (2012b) Dornburg et al. (2012a)

Dsouli_2011 M,N 39 1,635 7 Muscidae Flies Dsouli et al. (2011) NA

Ekrem_2010 M,N 74 2,701 10 Chironomidae Midges Ekrem et al. (2010) NA

Elias_2009 M,N 143 4,159 12 Nymphalidae Butterflies Elias, Joron, Willmott,
Silva-Brand~ao, et al. (2009)

Elias, Joron, Willmott,
Kaiser, et al. (2009)

Fishbein_2001 N,C 40 9,005 11 Saxifragales Core Eudicots Fishbein et al. (2001b) Fishbein et al. (2001a)

Fong_2012 N 110 25,919 168 Vertebrata Vertebrates Fong et al. (2012b) Fong et al. (2012a)

Grande_2013 M,N 65 4,027 12 Paracanthopterygii Fish Grande et al. (2013a) Grande et al. (2013b)

Guschanski_2013 M,C 110 17,092 63 Cercopithecini Monkeys Guschanski et al. (2013b) Guschanski et al. (2013a)

Kaffenberger_2011 M,N 54 6,548 26 Gephyromantis Malagasy frogs Kaffenberger et al. (2012) Kaffenberger et al. (2011)

Kang_2013a N 28 7,276 15 Xiphophorus Swordtail fish Kang et al. (2013) NA

Kang_2013b M 28 1,239 6 Xiphophorus Swordtail fish Kang et al. (2013) NA

Kawahara_2013 M,N 70 2,238 9 Hyposmocoma Caterpillar Kawahara and Rubinoff (2013a) Kawahara and Rubinoff
(2013b)

Lartillot_2012 N 78 15,117 51 Eutheria Mammals Lartillot and Delsuc (2012b) Lartillot and Delsuc (2012a)

Leavitt_2013 M 34 15,404 87 Acridoidea Grasshoppers Leavitt et al. (2013) NA

Li_2008 N 56 7,995 30 Actinopterygii Fishes Li et al. (2008) NA

Murray_2013 M,N 237 3,111 9 Eucharitidae Wasps Murray et al. (2013a) Murray et al. (2013b)

Rightmyer_2013 M,N 94 3,692 25 Hymenoptera Bee Rightmyer et al. (2013b) Rightmyer et al. (2013a)

Sauquet_2011 N,C 51 5,444 10 Nothofagus Beeches Sauquet et al. (2012) Sauquet et al. (2011)

Seago_2011 M 116 2,253 7 Coccinellidae Ladybirds Seago et al. (2011b) Seago et al. (2011a)

Sharanowski_2011 N 139 3,982 11 Braconidae Wasps Sharanowski et al. (2011b) Sharanowski et al. (2011a)

Siler_2013 M,N 61 2,697 7 Lycodon Wolf snakes Siler, Oliveros, et al. (2013) Siler, Brown, et al. (2013)

Tolley_2013 M 203 5,054 16 Chamaeleonidae Chameleons Tolley et al. (2013b) Tolley et al. (2013a)

Unmack_2013 M 139 6,827 25 Melanotaeniidae Rainbowfish Unmack et al. (2013b) Unmack et al. (2013a)

Wainwright_2012 N 188 8,439 30 Acanthomorpha Fishes Wainwright, Smith, Price, Tang,
Sparks, Ferry, Kuhn,
Eytan, et al. (2012)

Wainwright et al. (2012)

Ward_2010 N 54 9,173 27 Dolichoderinae Ants Ward et al. (2010) NA

Welton_2013 M,N 145 4,552 16 Varanus Lizards Welton et al. (2013b) Welton et al. (2013a)

NOTE.—NA, not applicable.

aData Type refers to DNA source (M, mitochondrial; N, nuclear; C, chloroplast).
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Mean distances between topologies estimated under differ-
ent partitioning schemes across all 34 data sets (RF, MS, PD)
are shown in table 2. These data show that when compared
with topologies estimated using the OptBIC scheme, topolo-
gies from the OptAICc scheme were the most similar
(RF = 0.048, MS = 0.038, PD = 0.0110), followed by those
from the Adhocfeat scheme (RF = 0.051, MS = 0.038,
PD = 0.114) and then those from the Adhocone scheme
(RF = 0.118, MS = 0.099, PD = 0.255). When compared
across all data sets, the distances of topologies estimated
using the OptAICc and Adhocfeat schemes were not signifi-
cantly different from one another (Mann–Whitney test, un-
paired, two-sided), but the distances of the topologies
estimated using the Adhocone scheme were significantly
larger than those estimated using the OptAICc and
Adhocfeat schemes (Mann–Whitney test, unpaired, two-
sided, P< 0.01 in all comparisons and across all three tree
distance metrics).

To further investigate the differences between tree topol-
ogies, we calculated the proportion of conflicted nodes, which
we define as the proportion of nodes that are present in one
of the trees estimated using the OptAICc, Adhocfeat, or
Adhocone partitioning schemes but not in the tree estimated
from the same data set using the OptBIC scheme. Out of a
total of 8,568 internal nodes examined across all data sets, 646
(7.54%) were conflicted. Trees estimated using the OptAICc

scheme or Adhocfeat scheme typically had far fewer conflicted
nodes than trees estimated with the Adhocone scheme
(OptAICc: 150; Adhocfeat: 154; Adhocone: 342, across all data
sets). The proportion of nodes in a tree that were conflicted
ranged from zero to over 15% of all nodes in a single tree
(fig. 1A), and tended to be highest in trees estimated with the
Adhocone scheme, for which it reached a value greater than
10% for 6 of 34 data sets (fig. 1A).

Effects on Branch-Lengths and Bootstrap Support
Branch-lengths remained very similar in the trees estimated
using the OptBIC, OptAICc, or Adhocfeat schemes, and the same
was true of bootstrap support values. In contrast, trees esti-
mated using the Adhocone scheme sometimes had very dif-
ferent branch-lengths and bootstrap values than trees

estimated using the other three partitioning schemes, and
the effect was particularly pronounced for branch-length
estimates.

Within each data set we calculated the mean branch-
length (BL) for each ML tree inferred with the four partition-
ing schemes. Although the trees in most data sets showed
quite consistent BL irrespective of the partitioning scheme
used to estimate them (fig. 2A), in a few data sets the trees
showed large fluctuations, with the BL of some trees inferred
under the OptAICc, Adhocfeat, and OptBIC schemes being an
order of magnitude greater than the BL of the tree inferred
under the Adhocone scheme. These long branch-lengths are
implausible, often reaching values much greater than 1, and
appear to be an unintended consequence of the ML inference
software that we used. In what follows we treat the six data
sets which contained trees with BL 4 0.15 (fig. 2A) as out-
liers, and repeat our analyses with and without these data sets.
After excluding outliers, visual inspection of the data (fig. 2B)
shows that partitioning a given data set with any of the
OptAICc, Adhocfeat or OptBIC schemes produced trees with
only very minor differences in mean branch-lengths, whereas
partitioning the data set with the Adhocone scheme produced
much greater variation in mean branch-lengths (e.g., in one
case, branches estimated with the Adhocone scheme were less
than half as long as those estimated with the OptBIC scheme;
see the Rightmyer_2013 data set, table 3).

To test the significance of any differences in branch-lengths
within each data set, after excluding the six outlier data sets
described above we compared the set of branch-lengths of
the tree estimated with the OptBIC scheme with the sets of
branch-lengths of the trees estimated with the OptAICc,
Adhocfeat, and Adhocone schemes (table 3). Only 1 data set
out of 28 showed a significant change in branch-length dis-
tribution when either the OptAICc or Adhocfeat partitioning
schemes were used instead of the OptBIC scheme (two-sided
Mann–Whitney test, P< 0.05). However, 13 out of 28 data
sets showed a significant change in branch-length distribution
(two-sided Mann–Whitney test, P< 0.05) when the
Adhocone partitioning scheme was used instead of the
OptBIC scheme (table 3).

To assess whether some partitioning schemes lead to the
inference of longer or shorter branch-lengths across data sets,
we calculated three differences in mean branch-length (!BL)
for each of the 34 data sets, that is, including the six outlier
data sets, in our study: !BL (OptBIC, OptAICc), !BL (OptBIC,
Adhocfeat), !BL (OptBIC, Adhocone). A two-tailed sign test
across all data sets (including the six outlier data sets)
showed that the mean branch-length of trees inferred with
the Adhocfeat scheme had a small but significant tendency to
be longer than the mean branch-length of trees inferred with
the OptBIC scheme (two-tailed sign test, P = 0.035, 23 of 33
data sets with nonzero branch-length differences had longer
mean branch-lengths with the Adhocfeat scheme; table 3),
whereas there was no directional trend when comparing
the mean branch-lengths of trees estimated using the
OptBIC scheme and either the OptAICc or Adhocone schemes
(two-tailed sign test, P 4 0.05 in both cases). However, after
removing the six outlier data sets we found that there was no

Table 2. Mean Topological Distances between Trees Inferred with
Different Partitioning Schemes.

Partitioning
Scheme
(vs. OptBIC)

All comparisonsa Distance 4 0b

RF MS PD # Data Sets
(out of 34)

RF MS PD

OptAICc 0.05 0.04 0.11 18 0.09 0.07 0.21

Adhocfeat 0.05 0.04 0.11 19 0.09 0.07 0.20

Adhocone 0.12 0.10 0.25 31 0.13 0.10 0.28

NOTE.—All distances are calculated relative to the trees inferred with the OptBIC

scheme. RF, Robinson-Foulds; MS, Matching Split; PD, Path Difference.
aIncludes every data set, including those where trees inferred under two different
schemes are topologically identical (i.e., distance = 0).
bOnly data sets where trees inferred under two different schemes are topologically
different.
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significant bias in the direction of the branch-length differ-
ences in any of the three comparisons (two-tailed sign test,
P 4 0.05 in all cases).

We included two tests to further investigate the effects of
partitioning on branch-length estimation. First, we assessed
the tendency for underpartitioned models to underestimate
longer branches in phylogenetic trees (Revell et al. 2005), by
repeating the comparison of branch-length distributions be-
tween trees estimated with different partitioning schemes
using only the longest quartile of the branches. When
either the OptAICc or Adhocfeat partitioning schemes were
used instead of the OptBIC scheme, the number of data sets
with a significant change in the distribution of long branches
(two-sided Mann–Whitney test, P< 0.05) was 1 and 2, re-
spectively. When the Adhocone partitioning scheme was used
instead of the OptBIC scheme, 18 out of 28 data sets showed a
significant change in the distribution of long branches (table 3
and supplementary table S1, Supplementary Material online).
However there was still no significant directional bias for the
change in branch-lengths across the 28 data sets (two-sided
Mann–Whitney test based on changes in the mean of the

longest quartile of branches, P 4 0.05 in all cases). Second,
we investigated whether there was any tendency for under-
specified models to systematically underestimate the length
of deeper branches. To do this, we calculated the slope of the
relationship between the depth of a branch and its length for
the trees inferred with the OptBIC and Adhocone schemes. Any
tendency to systematically underestimate the length of
deeper branches will cause the slope of this line to become
more negative. Thus, if underspecified models tend to under-
estimate deeper branches of the tree, we would expect trees
estimated with the Adhocone scheme to have a more negative
slope than trees estimated with the OptBIC scheme. We found
that the slope for trees inferred with the Adhocone scheme
was more negative in 18 out of 34 data sets, and more positive
in 16 out of 34 data sets, providing no evidence for a system-
atic underestimation of deeper branches across data sets
(supplementary table S2, Supplementary Material online;
two-tailed sign test, P = 0.864).

To test the effects of partitioning on bootstrap support
within each data set, we compared the bootstrap support
values of the tree estimated with the OptBIC to the bootstrap
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FIG. 1. The worse the partitioning scheme, the more different the tree topologies from topologies inferred with an optimal partitioning scheme. Each
panel shows boxplots of a measure of topological distance between trees inferred with the OptBIC partitioning scheme and trees inferred with three
other partitioning schemes. Each data point contributing to a boxplot represents one of the 34 data sets in our study. The three partitioning schemes
are ordered from left to right in decreasing similarity to the OptBIC scheme. (A) Proportion of nodes that differ between the two trees, (B) normalized
Robinson-Foulds distance, (C) normalized matching split distance, and (D) normalized Path Difference. In the three y axes in (B)–(D), a value of 0
corresponds to trees identical to the tree inferred using the OptBIC scheme, and a value of 1 represents the average difference between two randomly
generated trees (see main text).
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support values of the trees estimated with the
OptAICc, Adhocfeat, and Adhocone schemes (table 3).
There were no significant differences in the distribution of
bootstrap support values for any of the 34 data sets when
comparing trees estimated using the OptBIC scheme to those
estimated using the OptAICc or Adhocfeat schemes (two-sided
Mann–Whitney test, P 4 0.05 in all cases). One data set,
Fong_2012, showed a small but significant difference in boot-
strap support when comparing the tree inferred with the
Adhocone partitioning that inferred with the OptBIC scheme
(BS increased from 74.9 to 79.4, two-sided Mann–Whitney
test, P = 0.011).

Partitioning a given data set with any of the four partition-
ing schemes produced trees with only very minor differences
in mean bootstrap support (BS, fig. 3A). To assess whether
some partitioning schemes have a general tendency to lead to
higher or lower bootstrap support across data sets, we calcu-
lated three differences in mean bootstrap support (!BS) for
each of the 34 data sets in our study: !BS (OptBIC, OptAICc),
!BS (OptBIC, Adhocfeat), and !BS (OptBIC, Adhocone). Two-
tailed sign tests across all data sets showed no significant bias
in the direction of the bootstrap support difference in any of
the three comparisons (P 4 0.05 in all cases).

Properties of Conflicted and Congruent Nodes
To better understand the effects of partitioning on phyloge-
netic inference, we analyzed the properties of nodes that are
the same (congruent) or different (conflicted) in the trees
estimated using the four different partitioning schemes we
employed in this study. As above, we use the topology esti-
mated using the OptBIC partitioning scheme as a reference,
and for each of trees estimated using the other three parti-
tioning schemes we define conflicted nodes as those that are
not present in the reference tree, and congruent nodes as
those that are present in the reference tree.

Conflicted nodes tended to be associated with much
shorter and more weakly supported branches than congruent
nodes when the data were combined across all 34 data sets
(BLconflicted = 0.017, BLcongruent = 0.058; BSconflicted = 25.6,
BScongruent = 79.2, Mann–Whitney test, unpaired, two-sided,
P< 0.01 for the comparison of both branch-length and boot-
strap values). This conclusion was not affected by removing
the six long-branch outlier data sets (BLconflicted = 0.007, BLcon-

gruent = 0.033; BSconflicted = 31.4, BScongruent = 80.3, Mann–
Whitney test, unpaired, two-sided, P< 0.01).

The branch-lengths associated with conflicted nodes did
not differ significantly between partitioning schemes. Before
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removing outliers, there was a tendency for conflicted nodes
inferred with the Adhocone scheme to be associated with
shorter branches than were conflicted nodes inferred with
the OptAICc or Adhocfeat schemes (BLconflicted = 0.021, 0.031,
and 0.009 in the trees inferred with OptAICc, Adhocfeat, and
Adhocone schemes respectively; Mann–Whitney test, un-
paired, two-sided, P< 0.01; fig. 4A). However, once the six
outlier data sets were removed (fig. 4B), the mean branch-
lengths associated with conflicted nodes were more similar
across partitioning schemes (BLconflicted = 0.0053, 0.0053, and
0.0076 in the trees inferred with OptAICc, Adhocfeat, and
Adhocone schemes, respectively) and we found no significant
difference in the distributions of branch-lengths associated
with conflicted nodes inferred under each of the OptAICc,
Adhocfeat, and Adhocone schemes (two-sided Mann–
Whitney test, P 4 0.05 in all cases).

The bootstrap support values of conflicted nodes inferred
under the Adhocone scheme were significantly higher than
the those inferred under both the OptAICc and Adhocfeat

schemes (two-sided Mann–Whitney test, P< 0.01 in both
cases), whereas the difference between the bootstrap support
values of conflicted nodes inferred using the OptAICc and
Adhocfeat schemes was not significant (two-sided Mann–
Whitney test, P 4 0.05). This result remained the same

after removing the six data sets with outlying branch-lengths
(fig. 4C and D).

Out of the total of 646 conflicted nodes found across all
the data sets, only four were very highly supported (BS 4 95)
and two of those had maximum bootstrap values of 100.
These four highly supported conflicted nodes were all
found in topologies inferred with the Adhocone scheme in
two data sets: Ward_2010 and Fong_2012 (fig. 4D). Neither of
these two data sets was among the six outliers that were
removed in analyses of branch-lengths and bootstrap
support.

Discussion
Partitioning is one of the most popular methods used to
model the heterogeneity of molecular evolution among
sites in an alignment for phylogenetic inference. A number
of studies have used simulations to investigate the effects of
model misspecification (Lemmon and Moriarty 2004), parti-
tioning scheme choice (Brown and Lemmon 2007), and of the
inclusion or absence of rate variation among partitions
(Marshall et al. 2006). Additionally, many studies have inves-
tigated the effects of partitioning on phylogenetic inference
on individual empirical data sets (Brandley et al. 2005;
Strugnell et al. 2005; McGuire et al. 2007; Li et al. 2008;
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FIG. 3. Bootstrap support is usually consistent when trees are inferred with different partitioning schemes, but varies somewhat for trees inferred with
no partitioning. Each panel shows the mean bootstrap support (BS) for each data set when different partitioning schemes are used for tree inference.
Horizontal lines connect the same data set across treatments. (A) includes all 34 data sets, (B) shows only the 28 data sets with BL less than 0.15 (a cutoff
used to define outliers, see main text).
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Ward et al. 2010; Rota and Wahlberg 2012; Leavitt et al. 2013;
Powell et al. 2013; Tao et al. 2013). However, to date there
have been no systematic studies of the effects of partitioning
on phylogenetic inference across empirical data sets, making
it difficult to draw general conclusions. In this study, we com-
pared the effects of four approaches to partitioning across 34
data sets: Using partitioning by genomic features (Adhocfeat),
using partitioning schemes that are optimized with algorith-
mic approaches such as those implemented in
PartitionFinder (OptBIC and OptAICc, above), and using a
single subset of sites (i.e., no partitioning; Adhocone).

We quantified the effects of partitioning scheme choice on
the inference of tree topology, branch-lengths, and bootstrap
support in an ML framework. In general, we find that the
range of partitioning schemes we compared often produced
very similar trees for a given data set, with differences found
mostly at nodes with very low support. Underpartitioning
appears to produce more severe error than overpartitioning,
but it is difficult to predict in advance which data sets will be
more affected by partitioning scheme choice than others
(supplementary text S1 and fig. S1, Supplementary Material
online). We find a handful of cases in which different parti-
tioning schemes lead to very strongly supported differences in
tree topologies for the same data set, and so reiterate calls for
care to be taken when choosing partitioning schemes for
phylogenetic inference. In what follows, we begin by

comparing the results of phylogenetic inference under the
three partitioned models we analyzed (OptBIC OptAICc,
Adhocfeat) and then move on to discuss the effects of leaving
the data unpartitioned (i.e., using Adhocone).

Surprisingly, despite the fact that the two algorithmic
approaches (OptBIC and OptAICc) often led to very large im-
provements in the information theoretic scores over the
highly partitioned approach (e.g., a BIC score improvement
of OptBIC over Adhocfeat of 12,965 and 6,016 for the
Fong_2012 and Leavitt_2013 data sets, respectively), the
three approaches led to phylogenetic inferences with very
few biologically meaningful differences. The inferred topolo-
gies were identical in about half of the data sets, while in those
data sets where topological differences were found the con-
flicts were never highly supported and the measured distance
between inferred topologies was relatively small. For example,
the most strongly supported node that differed between the
highly partitioned scheme and the algorithmically optimized
scheme using the BIC had a bootstrap support of just 60%.
Also, the choice of either a highly partitioned scheme or an
algorithmically optimized scheme made little difference to
the branch-lengths of the inferred trees in all but one data
set (Kang_2013a, table 3), and made no significant difference
to bootstrap support in any data sets (table 3). As the highly
partitioned Adhocfeat scheme is most likely to be overparti-
tioned, these results are consistent with the view that
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FIG. 4. Conflicts between trees inferred with OptBIC partitioning and trees inferred with other partitioning schemes mostly occur at nodes with short
branch-lengths and low bootstrap support. Plots (A) and (B) show the logarithm of the branch-lengths of conflicted (white) and congruent (gray)
branches; plots (C) and (D) show the bootstrap support of conflicted (white) and congruent (gray) branches. Plots (A) and (C) include all branches from
all 34 data sets in the study. Plots (B) and (D) show only the branches from the 28 data sets with mean branch-length (BL) less than 0.15 (a cutoff used
to define outliers, see main text). Conflicted and congruent branches are defined as those that disagree and agree with the topology inferred using the
OptBIC scheme, respectively.
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overpartitioning tends to produce less severe error in phylo-
genetic inference than underpartitioning (Brown and
Lemmon 2007; Li et al. 2008).

In contrast to the comparison of partitioned approaches,
leaving the data unpartitioned (i.e., using the Adhocone par-
titioning scheme) often resulted in large differences in boot-
strap values, branch-lengths, and topologies compared with
using the algorithmically optimized scheme selected with BIC
(i.e., OptBIC). In some data sets the mean bootstrap value
changed by up to 4.7%, mean branch-length as much as
doubled or halved, whereas the normalized distance between
conflicted topologies was often greater than 0.10, indicating
that the two trees were more than 10% as different as two
randomly selected trees of the same size. Simulation studies
have shown that underparameterization often precludes ad-
equate modeling of the variation in rates and patterns of
molecular evolution among sites (Lemmon and Moriarty
2004), and that underpartitioning can therefore induce
large errors in phylogenetic inference (Brown and Lemmon
2007). In this study, we found that leaving the data unparti-
tioned led to large and occasionally significant differences in
bootstrap support across the whole tree when compared
with an algorithmically optimized partitioning scheme
(table 3, fig. 3). However, these differences were not biased
toward higher or lower bootstrap values when compared
across data sets. This suggests, in line with simulation studies
on the same topic (Brown and Lemmon 2007), that unpar-
titioned analyses increase error in bootstrap support values
but do not cause predictable biases toward higher or lower
values. Leaving the data unpartitioned also led to large and
frequently significant differences in branch-lengths between
data sets when compared with an algorithmically optimized
partitioning scheme (table 2, fig. 2). As with bootstrap sup-
port values, we find no evidence of a tendency for unparti-
tioned analyses to have longer or shorter branch-lengths,
suggesting that unpartitioned analyses are more prone to
error but not necessarily to systematic bias in branch length
estimation across the entire tree. These results differ from a
previous simulation study (Brown and Lemmon 2007), which
found no such error in branch-length estimates due to either
under- or overpartitioning. However, that study simulated
data in which evolutionary rates were identical across parti-
tions, which is very different to the case in most empirical
data sets. Many other studies, including some simulation
studies, have shown that correctly accounting for variation
in rates among sites (either through partitioning and/or the
use of distributions of rates among sites) is often crucial to
accurately estimating molecular branch-lengths (Lemmon
and Moriarty 2004; Marshall et al. 2006; Ho and Lanfear
2010). For example, studies have shown that underspecified
models tend to underestimate longer and deeper branches of
phylogenetic trees (Yang et al. 1994; Lemmon and Moriarty
2004; Phillips 2009), particularly when the model fails to ac-
commodate site rate heterogeneity through the use of a
gamma parameter, although some of these effects can be
reversed for some small data sets (Revell et al. 2005). We
found no evidence that the underpartitioning led to system-
atic effects on the estimation of either longer or deeper

branches (see table 3, supplementary tables S1 and S2,
Supplementary Material online). This might be because
these biases are not constant across data sets (Revell et al.
2005). It could also be because all of the partitioning schemes
we compared in our study used, at the very least, a model
with gamma distributed rates across sites, which may be suf-
ficient to account for systematic biases in estimating longer or
deeper branches in some cases (see Lemmon and Moriarty
2004).

In addition to the increased variance in bootstrap values
and branch-lengths, the trees inferred from unpartitioned
data had the most topological differences when compared
with the trees inferred using the OptBIC scheme. For example,
the Adhocone scheme produced different topologies in 31 out
of 34 data sets, and the measured distances between these
alternate topologies were typically much greater than dis-
tances between topologies from the partitioned approaches
(see table 2, fig. 1). Importantly, these differences were some-
times highly supported (fig. 4C and D). On the whole this
suggests that severe underpartitioning can sometimes pro-
duce large errors in phylogenetic inference.

As alignments increase in length, we expect the degree of
model misspecification to increase. This is reflected in the
increasing difference in AICc and BIC scores between the
four different partitioning schemes as the alignments increase
in length (supplementary table S3, Supplementary Material
online). Based on this, one might also expect the differences in
tree topologies, branch-lengths, and node support to increase
with alignment length. However, our data show the opposite
pattern (supplementary fig. S2, Supplementary Material on-
line)—the longer the alignment, the less the results depend
on the partitioning scheme. We attribute this to two possible
factors: 1) Phylogenetic signal presumably increases as data
sets get larger, thus larger data sets may converge on the
correct tree regardless of the partitioning scheme; and 2)
systemic error is likely to increase as data sets get larger
(e.g., due to the limitations of using stationary, reversible,
and homogeneous models; Galtier and Gouy 1995;
Rodr"ıguez-Ezpeleta et al. 2007), thus larger data sets may
converge on a single incorrect tree regardless of the partition-
ing scheme. Whatever the contribution of these two factors, it
is clear from our data that their combined effect serves to
reduce the effects of commonly used partitioning schemes on
phylogenetic inference as data sets increase in size.

Our results suggest that the choice of partitioning scheme
tends to predominantly affect nodes that have low bootstrap
support and/or are associated with short branches (fig. 4), in
concordance with previous studies (Brandley et al. 2005; Li
et al. 2008; Ripplinger and Sullivan 2008; Miller et al. 2009;
Leavitt et al. 2013). In one sense this is encouraging—if the
effects of choosing a suboptimal partitioning scheme are lim-
ited to poorly supported nodes, then there is little to worry
about as researchers typically do not make strong inferences
based on nodes with low support. However, in a few data sets
in our study, underpartitioning led to very highly supported
but likely incorrect inferences. For example, one of the data
sets we analyzed (Fong et al. 2012b) focused on the phyloge-
netic position of turtles within the amniotes, a subject of long-
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term debate (Lee et al. 2004; Crawford et al. 2012). In the
original analysis of this data set (see Fong_2012; table 1) tur-
tles were placed as either the sister group to Archosauria or
the sister group to Crocodilians (a clade within Archosauria),
depending on the data set and partitioning scheme used.
After rigorous analyses of many data sets, the authors con-
cluded that the turtle–archosaur relationship was correct,
and this conclusion has been corroborated by subsequent
studies (Shen et al. 2011; Chiari et al. 2012; Crawford et al.
2012; Fong et al. 2012b). In our analysis of one of their data
sets, when partitioned either algorithmically or with a highly
partitioned ad hoc scheme, we recovered the turtle–archo-
saur relationship. However when using an underpartitioned
scheme we recovered the incorrect turtle–crocodilian rela-
tionship with bootstrap support of 100%. Notably, the au-
thors also recovered this incorrect relationship using the same
data set but with an ad hoc partitioning scheme that ignored
variation in patterns of molecular evolution between codon
positions. Thus, in this case, the use of a poor partitioning
scheme could lead to very high confidence in an almost cer-
tainly incorrect result. In a similar case, Tao et al. (2013) found
that defining data blocks by gene alone for a four-locus data
set resulted in a very highly supported but incorrect arrange-
ment of a deep sister-group relationship in a complex
Cyprinidae phylogeny. Ward et al. (2010) found in a phyloge-
netic study of ants that both unpartitioned and slightly par-
titioned analyses strongly supported incorrect topologies, and
that “only partitioning the data both by gene and by codon
position within gene reverses this effect” (Ward et al. 2010).
Additionally, various studies have shown that failing to ac-
count for variation between codon positions can mislead
phylogenetic inference (Li et al. 2008; Miller et al. 2009;
Ward et al. 2010). These results, in combination with our
own, highlight some cause for concern: Phylogenetic infer-
ence may be significantly misled when trees are inferred
under very poor partitioning schemes.

As the trees inferred with the Adhocfeat scheme and the
two algorithmically optimized schemes are generally very sim-
ilar, our study suggests that the benefits of algorithmically
optimizing partitioning schemes using programs such as
PartitionFinder (Lanfear et al. 2012) may be limited, as long
as the initial data blocks are sufficiently carefully defined (see
also McGuire et al. 2007; Ward et al. 2010; Tao et al. 2013). But
this highlights that the a priori definition of data blocks is a
fundamental limitation of many current partitioning meth-
ods: Defining initial data blocks that are too small risks
overpartitioning the data, and defining data blocks that are
too large risks underpartitioning the data. In our data (sup-
plementary fig. S1 and text S1, Supplementary Material
online) the differences between trees inferred with a highly
partitioned scheme and trees inferred with an algorithmically
optimized scheme appear to decline as the number of sites
per data block increases, and it may be possible to use such
measures to help decide whether algorithmic optimization of
partitioning schemes is necessary for any given data set, al-
though such analyses may be more time consuming than the
algorithmic optimization itself.

Various methods exist that make use of the data to auto-
matically generate data blocks with increased accuracy.
Partitioning by automatically grouping sites based on site
rates (Kjer et al. 2001; Kjer and Honeycutt 2007) or through
Bayesian methods (Wu et al. 2013) are two such approaches
that warrant further investigation. We did not apply these
methods in our study as many the data sets we analyzed are
too large to be processed with many of these methods. Finally,
experimental determination of evolutionary models (Bloom
2014) may eventually obviate the need for partitioning in data
in certain very well-characterized cases.

Conclusions
Various approaches to partitioning have been established to
improve the way evolutionary heterogeneity is accounted for
in phylogenetic studies. We analyzed the effects of four
common partitioning approaches on a large collection of
empirical data sets by comparing the differences in resulting
tree topology, branch-lengths, and node support. The most
dramatic effect comes from leaving data unpartitioned, re-
sulting in sometimes large and unpredictable variation in in-
ferred branch-lengths, bootstrap support, and topology. Our
results highlight that the use of very poor partitioning
schemes can occasionally lead to strongly supported but in-
correct inferences from phylogenetic analyses. On the other
hand, a carefully defined ad hoc partitioning scheme will
often perform similarly to algorithmically optimized partition-
ing schemes. As the algorithmic method for estimating an
optimal scheme takes little extra effort, we recommend it
over the ad hoc approach as a way to mitigate the risk of
overpartitioning and poor parameter estimation.

Materials and Methods

Data Acquisition
We downloaded 34 published data sets used in previous phy-
logenetic studies from Dryad Digital Repository, Treebase, and
other sources, each of which contains a multilocus DNA align-
ment (table 1). The alignments range from 13 to 2,872 taxa
and 823 to 25,919 sites. They include data from the mito-
chondrial, nuclear, and chloroplast genomes from a diverse
array of animals and plants. We avoided data sets where the
corresponding published paper noted that the sequence
alignment was problematic for phylogenetic inference.
Additionally, the inclusion of a data set was blind to whether
or not the original study had described any effects of parti-
tioning on phylogenetic inference.

If an alignment contained a group of more than two iden-
tical sequences, we randomly removed sequences from this
group until there were two remaining. This is because groups
of three or more identical sequences have equal likelihoods
under a range of different binary tree topologies, potentially
confounding our comparisons of ML trees under different
partitioning schemes. We also removed nonnucleotide (e.g.,
morphological) sites from those alignments that contained
them. Original and curated alignments are available from
Figshare at DOI: 10.6084/m9.figshare.991367.
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Partitioning
We partitioned each alignment with PartitionFinder software
v 1.1.0 (Lanfear et al. 2012). Partitioning involves two steps:
Defining groups of sites that are assumed to have evolved in
similar ways; and then choosing an appropriate model of
molecular evolution for each group of sites. The first step in
partitioning involves the assignment of each site in an align-
ment to a data block. Data blocks are user-defined sets of
sites, typically encompassing distinct DNA features such as
genes, intron, exons, and codon positions. Distinct data blocks
may be further grouped together if they are deemed to evolve
homogeneously. We used data blocks defined by the data
sets’ original authors where possible. In cases where the orig-
inal study did not define data blocks in protein-coding genes
based on codon positions, we defined these by finding the
correct open-reading frame in Geneious version R6
(http://www.geneious.com, Kearse et al., 2012) using the pub-
lished protein sequence for each gene.

In order to assess the effect of partitioning on tree infer-
ence, we defined four partitioning schemes that represent
commonly used approaches:

1) Adhocone—this is a user-defined partitioning scheme
that assigns every data block to one single group. This
is the equivalent of leaving the data unpartitioned as only
one substitution model is applied to all sites in the align-
ment. Substitution model selection and fit was assessed
with BIC.

2) Adhocfeat—this is a user-defined partitioning scheme
that partitions the data set into the maximum possible
number of data blocks based on genomic features (genes,
codon positions, exons, and introns) and assigns every
data block to its own group. In cases where data blocks
are defined by genes and codon positions this scheme
represents the commonly used gene-by-codon partition-
ing (Nylander et al. 2004; Shapiro et al. 2006).
Substitution model selection and fit was assessed
with BIC.

3) OptAICc—this is an algorithmically optimized partition-
ing scheme using the data blocks defined in the
Adhocfeat scheme as a starting point, with substitution
model selection and fit assessed with AICc. We chose to
use AICc rather than AIC as it takes into account the size
of the alignment when assessing model fit (Burnham and
Anderson 2002).

4) OptBIC—this is an algorithmically optimized partitioning
scheme using the data blocks defined in the Adhocfeat

scheme as a starting point with substitution model se-
lection and fit assessed with BIC. Using PartitionFinders
greedy algorithm this is not guaranteed to be the abso-
lute best scheme possible, but it has been shown to ap-
proach the optimal result in most cases.

We configured PartitionFinder for each data set and par-
titioning scheme. The subset definitions for the Adhocfeat and
Adhocone configurations were applied using the
“search = user” setting. The subset definitions for the OptBIC

and OptAICc configurations were calculated using the greedy

algorithm in PartitionFinder by setting “search = greedy.” We
set “branchlengths = linked” for all analyses. All schemes
except the OptAICc scheme used “model_selection = BIC.”
With these settings we ran two independent
PartitionFinder analyses per partitioning scheme—one with
“models = GTR+G” and one with “models = GTR+I+G”—and
selected the analysis with the lowest information theoretic
score as the best for that scheme. This approach is necessary
because these are the only two models implemented in
RAxML 7.5., and each predefined subset input to RAxML
using the “-q” command must be assigned an independent
version of the same model. Partition definitions for RAxML
were copy-pasted from the PartitionFinder “best_scheme.txt”
file.

Tree Inference
We estimated the ML tree for each of the four partitioning
schemes for each data set using RAxML 7.5.3 MPI (Stamatakis
2006), resulting in four ML trees per data set.

We chose to use RAxML as it is the only ML tree inference
software capable of analyzing all of the data sets included in
this study. It is one of the most popular pieces of phyloge-
netics software and was the most commonly used software in
the 34 studies whose data sets we analyze in this article.

For each data set we used RAxML to perform 96 ML tree
searches per analysis, and a full ML bootstrap analysis with
1,024 replicates per analysis. In total, 13,440 ML trees were
inferred with 143,360 bootstrap runs with the assistance of
the computational facilities of the National Computational
Infrastructure, Australia.

Data Analysis
In order to assess the effects of partitioning scheme choice on
phylogenetic inference, we focused the analysis on three key
metrics: 1) Topology, 2) branch-lengths, and 3) bootstrap
support.

For each data set we used R and the “ape” package (Paradis
et al. 2004) to read in the four best trees, one for each of the
four partitioning schemes. The best tree inferred with the
OptBIC scheme was used as the standard against which we
compared the trees inferred with the OptAICc, Adhocfeat, and
Adhocone schemes. Although it would have been possible to
perform further pairwise analyses, such as comparisons be-
tween trees inferred with the Adhocone and OptAICc schemes,
we felt this would add unnecessary complexity to the study.
We chose the tree inferred with the OptBIC scheme as the
standard for reference. Any of the four trees could have been
chosen as the reference, but since models selected with the
BIC have been shown to perform equally well as those se-
lected with AIC or AICc (Minin et al. 2003; Abdo et al. 2005),
we elected to use those estimated with the algorithmically
generated OptBIC scheme as this scheme is most representa-
tive of current best practice in model selection.

All scripts and data files used in the analysis are available for
download from Figshare at DOI: 10.6084/m9.figshare.991367
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Analysis of Topology
Topological distance metrics provide a measure of the dis-
similarity of the branching structure of two or more trees. By
comparing the distance between a tree inferred with the
OptBIC partitioning scheme and each of the other three
trees, we obtain an indication of how different the relation-
ships among taxa would be under different partitioning
schemes. A distance of zero indicates that two trees are iden-
tical in topology, though not necessarily with identical
branch-lengths. For each data set, we measured the topolog-
ical distance between the tree inferred with the OptBIC par-
titioning scheme and each of the trees inferred with the other
three schemes using three metrics: Robinson-Foulds
(Robinson and Foulds 1981), Path Difference (Steel and
Penny 1993), and Matching Split (Bogdanowicz and Giaro
2012). Robinson-Foulds is a measure of symmetric difference
between two trees that counts the absence of nodes in one
tree but not the other. Matching Split is also a measure of
symmetric difference, similar to Robinson-Foulds, but assigns
greater importance to differences at deeper nodes in the tree
as opposed to differences closer to the leaves. Path Difference
is a measure of the difference in edge-based distances be-
tween pairs of taxa. We used Robinson-Foulds as it is the
most commonly used metric, whereas Path Difference and
Matching Split offer alternative approaches that have more
attractive statistical properties, and have been shown to be
more commonly in agreement with each other than
Robinson-Foulds (Bogdanowicz and Giaro 2012).

Tree comparison values often scale with the number of
taxa in the subject trees. As our data sets varied substantially
in the number of taxa they contained, we normalized the tree
distances to enable reliable comparison of the effects of par-
titioning on topological distances. We calculated normalized
distances using TreeCmp software (Bogdanowicz et al. 2012).
TreeCmp calculates a normalized distance for each metric by
comparing the distance between two trees to the average
distance between randomly generated trees with the same
number of taxa. A value of 0 implies that two trees are iden-
tical whereas a value of 1 implies that two trees are as dis-
similar as two randomly generated trees.

Analysis of Branch-Lengths
We analyzed branch-lengths in two ways: Within and be-
tween data sets. Within any given data set, we asked whether
the total distribution of branch-lengths changed significantly
depending on which of the four partitioning schemes was
used to estimate the ML tree. To minimize the total
number of tests, we chose the tree estimated using the
OptBIC partitioning scheme as the reference, as above. As a
result, we performed three comparisons of branch-length dis-
tributions for each of the 34 data sets in our study: OptBIC

versus OptAICc, OptBIC versus Adhocfeat, and OptBIC versus
Adhocone. Each comparison involved comparing the distribu-
tion of branch-lengths from a pair of trees estimated from the
same data using a two-sided Mann–Whitney test (R function
wilcox.test). Although performing 102 statistical tests is likely
to lead to many false positive results, we use the P values from

these tests only to indicate whether different partitioning
schemes tend lead to important differences in branch-
length distributions.

Our between-data set analysis asks whether, across all 34
data sets in our study, there is a tendency for some partition-
ing schemes to lead to longer or shorter branch-lengths than
other partitioning schemes. To do this, we calculated three
differences in mean branch-length for each of the 34 data sets
in our study: !BL (OptBIC, OptAICc), !BL (OptBIC, Adhocfeat),
and !BL (OptBIC, Adhocone). We then used two-tailed sign
tests to ask whether the trees estimated using the OptBIC

scheme tended to have longer or shorter branch-lengths
than the trees estimated under any of the other partitioning
schemes (i.e., a total of three sign tests).

We repeated the above analyses using only the longest
quartile of branches per tree to assess the tendency for un-
derpartitioned models to under- or overestimate longer
branches. Finally, we tested for the tendency of underparti-
tioned models to systematically underestimate the length of
branches deeper in the tree. For each data set, the ape pack-
age in R was used to extract the depth of each node in the
rooted trees inferred with the OptBIC and Adhocone schemes.
We then fit a linear model to the relationship of node depth
and log(BL) for the branches of each tree, and extracted the
slopes of the models. We used a two-tailed sign test to de-
termine whether a systematic difference existed between the
slopes of the two models across all data sets. Such a tendency
would indicate bias in the estimation of branch-lengths at
varying node depth due to partitioning scheme choice.

Analysis of Bootstrap Support
The same analysis that was performed for branch-lengths was
performed for bootstrap support values, excluding the tests
involving the longest quartile of branches and the depth of
branches.

Analysis of Conflicted Nodes
A topological distance measure greater than zero indicates
that, for a given data set, the choice of partitioning scheme
has influenced the presence or absence of certain nodes in the
inferred trees. We wished to investigate the characteristics of
those nodes in order to understand where and why partition-
ing has an effect on phylogenetic inference.

We define a conflicted node as a node that is found in a
tree estimated with either of the Adhocone, Adhocfeat, or
OptAICc schemes but that is not found in the tree estimated
with the OptBIC scheme. For each data set, we used the
“prop.clades” method of the ape package in R to extract
sets of conflicted nodes and also the converse set of congru-
ent nodes for each data set. To examine the properties of
conflicted and congruent nodes, we used a Mann–Whitney
test to compare, for each of the Adhocone, Adhocfeat, or
OptAICc partitioning schemes, the distributions of branch-
lengths and bootstrap support of the conflicted nodes to
the distributions of branch-lengths and bootstrap support
of the congruent nodes across all data sets.
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Finally, we investigated individual data sets that presented
any conflicted nodes with very high bootstrap support
(4 95) to determine the phylogenetic impact, if any, of the
conflict. We used the “Distory” package in R (Chakerian and
Holmes 2013) and Archaeopteryx 0.98 visual tree comparison
tool (Han and Zmasek 2009) to highlight the nodes and
branches with conflicts and to assess their phylogenetic
impact with respect to the published phylogeny.

Supplementary Material
Supplementary text S1, tables S1–S3, and figures S1 and S2 are
available at Molecular Biology and Evolution online (http://
www.mbe.oxfordjournals.org/).
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