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Rates of molecular evolution have been shown to
vary significantly among nucleotide sites, loci, and taxa.
In addition to these forms of rate heterogeneity, there is
evidence that molecular rates vary with the timescale
over which they are estimated. One of the most striking
observations has been that of elevated mutation rates
over very short timescales, such as those presented in
studies of pedigrees (e.g., Howell et al. 2003; Millar et al.
2008) and mutation accumulation lines (e.g., Denver
et al. 2000; Haag-Liautard et al. 2008). In contrast, much
lower rates are observed over evolutionary timescales,
as estimated in phylogenetic analyses calibrated with
reference to paleontological or geological data.

The disparity between rates of spontaneous mutation
and evolutionary substitution can exceed an order of
magnitude. Intermediate rates are expected between
these two ends of the spectrum, but there has been dis-
agreement over the exact form of the decline from the
mutation rate to the substitution rate. Some authors
have suggested that elevated mutation rates are very
short-lived, perhaps persisting for only a small number
of generations (Macaulay et al. 1997; Gibbons 1998).
More recently, it was proposed that the estimated rate
decays exponentially over tens to hundreds of thou-
sands of years, producing a “time dependence” of rates,
whereby the magnitude of the inferred rate depends
on the age of the calibration used in the analysis (Ho
et al. 2005, 2007c; Penny 2005; Ho and Larson 2006). Al-
though some of the original evidence for this hypothesis
has been challenged (Emerson 2007; Bandelt 2008), there
has been a steady accumulation of empirical and theo-
retical support for a prolonged elevation of short-term
rates (e.g., Genner et al. 2007; Burridge et al. 2008; Henn
et al. 2009; Peterson and Masel 2009; Soares et al. 2009).
This has included compelling evidence from analyses
of ancient DNA (aDNA) in which the sampling times of
the heterochronous sequences are able to provide cali-

brating information for estimating rates (e.g., Lambert
et al. 2002; Barnes et al. 2007; Ho et al. 2007b; Hay et al.
2008; Subramanian et al. 2009a).

In a recent critique, Debruyne and Poinar (2009)
have claimed that the high rate estimates obtained in
Bayesian analyses of aDNA data are an unintended
consequence of analyzing short sequences. According
to their “signal-dependent artifact” hypothesis, aDNA-
based rate estimates depend almost entirely on the
information content in the sequence alignment. The
essence of the criticism is that the posterior distribution
of the rate becomes so wide that the posterior mean
becomes an upwardly biased estimator. This behavior
has been noted in previous studies of heterochronous
data with low information content (e.g., Ho et al. 2007c;
Firth et al. 2010). However, Debruyne and Poinar go
on to state that “the [rate] acceleration phenomenon
is certainly of much lower magnitude than has been
previously reported by Ho et al. (2005)” (p. 358). This
is a misleading comparison because our study was
based almost exclusively on analyses of modern DNA
(isochronous sequences) using internal-node calibra-
tions which, as argued by Debruyne and Poinar, are able
to overcome the signal-dependent artifact. In fact, much
of the evidence for time-dependent rates has come from
analyses of isochronous data (e.g., Genner et al. 2007;
Burridge et al. 2008; Henn et al. 2009; Soares et al. 2009;
Papadopoulou et al. 2010).

Resolving the concerns over Bayesian rate estimates
from aDNA is important for several reasons. First,
aDNA sequences typically range in age from 102 to
105 years, thereby filling a crucial calibration gap be-
tween the time periods covered by pedigrees (usually
< 102 years) and fossil-calibrated species phylogenies
(usually> 106 years). Second, because the ages of aDNA
sequences can provide sufficient calibrating information
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for estimating rates (Drummond et al. 2003), these data
make it possible to circumvent problems associated
with choosing and implementing calibrations at inter-
nal nodes (Emerson 2007; Ho and Phillips 2009; Firth
et al. 2010). In particular, terminal-node calibrations
remove the need for assumptions about genetic diver-
gence being correlated with the divergence of species or
populations, which can be dubious because of the uncer-
tainty posed by ancestral polymorphism (Charlesworth
et al. 2005; Peterson and Masel 2009). Consequently,
if rates can be accurately estimated from aDNA data,
some insight can be gained into the underlying causes
of time-dependent rates (Ho et al. 2007c).

There is still uncertainty regarding the factors driving
the time dependence of rates. Previous studies have
considered the possibility of contributions from incom-
plete purifying selection, calibration error, sequencing
error, aDNA damage, ancestral polymorphism, satu-
ration, and model misspecification, among others (Ho
et al. 2005, 2007c; Woodhams 2006; Henn et al. 2009;
Loogväli et al. 2009; Peterson and Masel 2009; Soares
et al. 2009; Subramanian et al. 2009a). Debruyne and
Poinar have added to this list with their suggestion
that mean posterior rate estimates are upwardly bi-
ased for data sets with low information content. Dis-
tinguishing among these various factors is crucial to
future studies of recent divergence times, evolution-
ary rates, and the molecular evolutionary process in
general.

Below, we investigate the two major aspects of the
critique by Debruyne and Poinar. The first of these is
that the posterior mean provides a biased measure of
the rate in Bayesian analyses of data sets with low in-
formation content. To examine this issue, we perform
new analyses of sequence data simulated using known
evolutionary parameters. We assess the relationship be-
tween sequence variation and estimated rate under a
range of simulation conditions, including various rates
and sequence lengths.

The second major aspect of the critique by Debruyne
and Poinar is that the artifactual rate estimates from
aDNA data are governed by the information content of
the alignments, as measured by the number of variable
sites. Indeed, Debruyne and Poinar base their entire
signal-dependence model on analyses of alignments of
varying length, which they regard as a suitable proxy
for information content. Although this might be ap-
propriate for isochronous data, we argue that it does
not provide the full picture for heterochronous data be-
cause the ages of the tips represent a crucial part of the
phylogenetic and temporal signal. We propose that the
amount of information contained in these ages depends
on their structure and spread, including the length of
the sampling interval in relation to the period spanned
by the genealogy of the sequences (Drummond et al.
2003; Firth et al. 2010). To investigate this, we perform
new analyses of 18 published aDNA alignments to as-
sess whether the ages of the sequences in these data sets
provide sufficient calibrating information for estimating
rates. The results of these analyses show that most real

data sets appear to have satisfactory temporal structure
and signal.

The results of our new analyses indicate that the “sig-
nal dependence” hypothesis has limited relevance to the
majority of real aDNA data sets. Our results also sug-
gest that the signal dependence cannot be regarded as
an analogue to time dependence, unless one is willing
to accept the validity of equating alignment length with
temporal depth in aDNA data. Moreover, our results
highlight the importance of other factors, including the
distribution of sampling times, choice of population size
prior, and the use of appropriate summary statistics in
analyses of heterochronous sequence data that exhibit
low variation.

NEW ANALYSES IN RESPONSE TO DEBRUYNE AND
POINAR

Here, we build upon a simulation study that was pre-
sented in one of our previous evaluations of Bayesian
rate estimation using aDNA data (Ho et al. 2007b).
Debruyne and Poinar have challenged the results of this
study, criticising two aspects of our analyses. First, they
argue that the rates estimated from the simulated data
are more precise than those obtained from real aDNA
data. Although this observation is correct, these results
are an expected consequence of simulation-based analy-
sis: the evolutionary models for nucleotide substitution
and demographic history used in the analysis of the
simulated data are chosen to match the conditions un-
der which the data were generated. This is adopted as
standard practice to make it easier to isolate the effects
of the factor(s) of interest.

The second criticism of the simulation study of Ho
et al. (2007b) is that the substitution rate used in the sim-
ulations is too high, with Debruyne and Poinar stating
that the rate is “25-fold the estimate of the substitution
rate for the mt genome of vertebrates” (p. 350). How-
ever, this simulation rate was inspired by published
estimates from the mitochondrial D-loop (Lambert et al.
2002; Shapiro et al. 2004), whereas Debruyne and Poinar
compare this rate to that estimated from their elephantid
data, which is based on whole mitochondrial genomes
analyzed over a phylogenetic timeframe. Indeed, the
vast majority of published aDNA data sets comprise
sequences from the D-loop, which exhibits much higher
mutation and substitution rates than does the rest of
the mitochondrial genome in vertebrates. This also calls
into question the design of the main analysis presented
in their critique, in which subsamples from the com-
plete mitochondrial genomes of woolly mammoths
were taken to be representative of real aDNA data sets.

Nevertheless, the high rate used in our simulation
could be viewed as a legitimate problem if short-term
rates were not actually elevated. This led Debruyne
and Poinar to pose the question: “what would the ac-
curacy and precision of the posterior rate of change be
if a slower rate of substitution, in the range of the in-
terspecific mitochondrial substitution rates (between 1
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and 2 × 10−8 substitutions/site/year) were applied to
simulate the same sequence data?” (p. 350). In response
to this question, and to address some of their other con-
cerns, we present the results of a detailed simulation
study below.

Simulation Study

We conducted analyses of simulated aDNA data to
investigate the performance of Bayesian rate estima-
tion. The amount of rate estimation bias is quantified
under various combinations of simulation rate and se-
quence length, including conditions that might match
those commonly encountered in real aDNA research.
We investigate the impact of varying the population-
size prior, and we compare the performance of different
posterior measures of the rate.

Materials and methods.—Sequence evolution was sim-
ulated using Seq-Gen (Rambaut and Grassly 1997)
on random trees generated according to a coalescent
model with a constant population size of 105. Each
simulated data set comprised 31 time-stamped, nonre-
combining sequences, with ages of 0, 1000, 2000, . . . ,
30,000 years. All sequences were generated according
to the Jukes–Cantor model of nucleotide substitution
(Jukes and Cantor 1969), with rate homogeneity among
sites and among branches. Simulations were performed
with 3 different substitution rates (1 × 10−8 substitu-
tions/site/year, 5 × 10−8 substitutions/site/year, and
1×10−7 substitutions/site/year) and 2 sequence lengths
(100 and 1000 bp), representing the range of charac-
teristics of typical aDNA data sets and encompassing
conditions expected to generate sequence alignments
with low information content. One thousand replicate
data sets were generated for each combination of se-
quence length and rate. Apart from the substitution rate
and sequence length, the simulations are identical to
those described in the “uniform sampling regime” in
our previous study (Ho et al. 2007b).

Substitution rates were estimated from the simu-
lated data sets using the Bayesian phylogenetic software
BEAST 1.4.8 (Drummond and Rambaut 2007). To match
the simulation conditions, the Jukes–Cantor substitu-
tion model was assumed and a constant-size coalescent
prior was chosen for the tree. A uniform prior of [0,∞)
was chosen for the substitution rate. Posterior distri-
butions of parameters were obtained by Markov chain
Monte Carlo (MCMC) sampling, with samples drawn
every 500 steps over a total of 2 × 107 steps, with the
first 10% of samples discarded as burn-in. To compare
different posterior measures of the substitution rate, the
mean, median, and mode of the posterior rate distribu-
tion were calculated for each analysis. Effective sample
sizes of parameters were examined to check for accept-
able MCMC mixing and sufficient sampling from the
posterior.

For any given data set, the estimates of rate and pop-
ulation size are closely tied. The population size prior
can be influential in the estimation of rates, particularly

when the data set is relatively uninformative. We inves-
tigated this issue by performing three sets of analyses,
differing only in the population size prior: 1) population
size fixed to its true (simulation) value of 105; 2) popula-
tion size given a uniform prior of [0,∞); and 3) popula-
tion size given a uniform prior of [100, 109], representing
a range of values that could be considered biologically
plausible for vertebrates. Note that in all these analyses,
“population size” is actually given as Neτ, the product
of the effective population size (Ne) and generation time
in years (τ).

Results.—The performance of rate estimation varied
considerably among the three sets of simulations, pro-
viding a strong indication of the influence of the pop-
ulation size prior (Table 1). When the population size
is fixed to its true (simulation) value of 105, estimates
of rates are accurate and precise. The 95% highest pos-
terior density (HPD) interval of the substitution rate
included the simulation value at least 95% of the time.
As noted by Debruyne and Poinar, the mean posterior
rate estimates reveal that there is considerable over-
estimation of the rate when there is low information
content or little sequence variability in the data set (low
substitution rate and/or short sequence length). How-
ever, this bias disappears in the more informative data
sets. As the posterior rate distributions are leptokurtic,
the medians are less biased than the means. The poste-
rior mode, which represents the maximum a posteriori
estimate of the rate, appears to provide an unbiased
measure across all combinations of substitution rate
and sequence length.

A different pattern emerges when the population
size is given an unbounded uniform prior distribution
(Table 1). Many of the MCMC analyses failed to con-
verge, yielding posterior samples with effective sample
sizes not exceeding 100 and with the population size
tending toward infinity and the rate tending toward
zero. The percentage of analyses that failed to converge
ranged from 10.2% to 99.2% across the 6 simulation
settings (Fig. 1). If these problematic replicates are re-
moved, the remaining replicates appear to yield reason-
able estimates of the substitution rate (Table 1). The 95%
HPD interval of the rate, although considerably wider
than when the population size was fixed to its correct
value, included the simulation value at least 96% of the
time. Plausible, unimodal estimates of the population
size were obtained in the MCMC analyses that showed
signs of convergence. However, in almost all the simu-
lation settings, the rate was overestimated by the mean,
median, and mode. This could be a direct consequence
of removing the replicates that produced unconverged
MCMC analyses because those would have been the
data sets with stochastically lower information content
(i.e., driven by a smaller number of substitutions and
thus producing lower rate estimates). Taking this into
consideration, it is difficult to establish whether the esti-
mation bias is genuine or whether it results from taking
a biased sample of the simulation replicates.
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TABLE 1. Summary of results from the simulation study, averaged across 1000 replicates. For the simulations with a population size prior
of Uniform[0,∞), results were only summarized from the replicates that exhibited acceptable MCMC convergence. Further details are given in
the text

Mean size of 95%
Prior on True rate Length Posterior rate estimate (substitutions/site/year) HPD interval 95% HPD
population size (substitutions/site/year) (bp) Mean Median Mode (substitutions/site/year) coveragea

Fixed to 105 1.00 × 10−8 100 2.32 × 10−8 1.87 × 10−8 1.05 × 10−8 5.63 × 10−8 0.98
Fixed to 105 1.00 × 10−8 1000 1.20 × 10−8 1.14 × 10−8 1.01 × 10−8 1.67 × 10−8 0.96
Fixed to 105 5.00 × 10−8 100 6.74 × 10−8 6.17 × 10−8 5.10 × 10−8 1.15 × 10−7 0.96
Fixed to 105 5.00 × 10−8 1000 5.31 × 10−8 5.20 × 10−8 4.97 × 10−8 4.51 × 10−8 0.96
Fixed to 105 1.00 × 10−7 100 1.20 × 10−7 1.13 × 10−7 1.00 × 10−7 1.67 × 10−7 0.97
Fixed to 105 1.00 × 10−7 1000 1.04 × 10−7 1.03 × 10−7 9.99 × 10−8 7.18 × 10−8 0.95
Uniform[0,∞) 1.00 × 10−8 100 1.68 × 10−7 1.21 × 10−7 3.57 × 10−8 4.80 × 10−7 1.00
Uniform[0,∞) 1.00 × 10−8 1000 2.82 × 10−8 2.56 × 10−8 2.08 × 10−8 5.49 × 10−8 0.97
Uniform[0,∞) 5.00 × 10−8 100 1.92 × 10−7 1.65 × 10−7 1.07 × 10−7 4.32 × 10−7 0.96
Uniform[0,∞) 5.00 × 10−8 1000 5.89 × 10−8 5.71 × 10−8 5.35 × 10−8 8.10 × 10−8 0.98
Uniform[0,∞) 1.00 × 10−7 100 2.66 × 10−7 2.40 × 10−7 1.86 × 10−7 5.28 × 10−7 0.97
Uniform[0,∞) 1.00 × 10−7 1000 1.03 × 10−7 1.01 × 10−7 9.78 × 10−8 1.10 × 10−7 0.97
Uniform[100,109] 1.00 × 10−8 100 3.53 × 10−8 7.34 × 10−9 8.31 × 10−9 1.68 × 10−7 1.00
Uniform[100,109] 1.00 × 10−8 1000 9.07 × 10−9 6.71 × 10−9 2.48 × 10−9 2.52 × 10−8 0.81
Uniform[100,109] 5.00 × 10−8 100 5.20 × 10−8 2.75 × 10−8 8.48 × 10−9 1.84 × 10−7 0.83
Uniform[100,109] 5.00 × 10−8 1000 4.66 × 10−8 4.48 × 10−8 3.53 × 10−8 7.26 × 10−8 0.87
Uniform[100,109] 1.00 × 10−7 100 8.44 × 10−8 5.80 × 10−8 2.18 × 10−8 2.49 × 10−7 0.78
Uniform[100,109] 1.00 × 10−7 1000 9.79 × 10−8 9.63 × 10−8 9.11 × 10−8 1.09 × 10−7 0.91

aProportion of simulations in which the 95% HPD interval of the rate contained the true (simulation) value.

When the population size is constrained to a range of
biologically plausible values (100–109), yet another pic-
ture materialises. Coverage by the 95% HPD intervals
was poorer, with the simulation value being excluded
from the 95% HPD interval up to 22% of the time
(Table 1). The mean size of the 95% HPD interval is
smaller than in the analyses without any restrictions
on the population size, although the disparity disap-
pears as the number of variable sites in the alignment
increases. The posterior mode is no longer the best
summary of the rate, probably because the constraints
on population size also impose restrictions on the val-
ues that can be taken by the substitution rate. In some
cases, the posterior distribution of the rate is implicitly
constrained, leading to a distorted mode. On the other
hand, the posterior mean appears to provide a rea-
sonably accurate estimate of the true substitution rate
(Table 1), although it is possible that this is partly an
unintended consequence of the population size con-
straints. That is, the mean posterior rate might only
be accurate as a result of the population size priors
constraining the substitution rate to reasonable values,
even in the absence of real information on rates in the
data. This effect could potentially explain some of the
published rate estimates from uninformative aDNA se-
quence alignments, which have taken seemingly plausi-
ble values in spite of the low information content of the
data.

aDNA Data Sets

Published aDNA data sets vary considerably in terms
of their sequence lengths and underlying substitution
rates as well as the temporal structure and spread of the

samples. It would be useful to evaluate the information
content in these data sets to determine whether they can
produce reliable estimates of substitution rates and di-
vergence times. One significant facet of heterochronous
data that is overlooked by the use of diversity statistics
(Depaulis et al. 2009), and in the analyses of informa-
tion content performed by Debruyne and Poinar, is that
the ages of the sequences form an important component
of the information content (e.g., Firth et al. 2010). This
stems from the fact that the sequence ages are used for
calibrating estimates of substitution rates. A potential
problem in analyses of heterochronous data is that rate
estimates could be an artifact of the sampling ages.

Here, we use a date randomization test to investigate
temporal structure in 18 published aDNA data sets. This
test involves reanalyzing each data set after randomly
shuffling the ages of the sequences and follows several
previous studies of heterochronous data (de Bruyn et al.
2009; Miller et al. 2009; Subramanian et al. 2009b; Firth
et al. 2010). The date randomization analysis is able to
provide some insight into whether the structure and
spread of the sequence ages are sufficient to provide re-
liable information on the rate underlying the evolution
of the data set. If the original rate estimate is recovered
in the date-randomized data sets, then there is insuffi-
cient temporal structure in the original data set and the
rate estimate cannot be supported (Firth et al. 2010).

Materials and methods.—Using the Bayesian phyloge-
netic method implemented in BEAST v1.5.4 (Drummond
and Rambaut 2007), we analyzed 18 published aDNA
alignments: 16 of the 19 aDNA data sets analyzed by Ho
et al. (2007b), the 11 mitogenome alignment of woolly
mammoths examined by Debruyne and Poinar, and
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FIGURE 1. Graphs showing the correspondences between mean posterior population size, mean posterior rate, and MCMC convergence
for Bayesian analyses of data generated under 6 different simulation conditions (3 different rates and 2 different sequence lengths). The results
were obtained using an uninformative population size prior (uniform from 0 to∞). Each panel shows the results from analyzing 1000 replicates,
ranked from left to right by ascending mean posterior population size (top curve). The mean posterior rate estimate for the corresponding data
set is also displayed on the same scale (lower curve), showing a close relationship with the estimated population size. Each simulation is given
a gray vertical line in the background if the effective sample size for the posterior likelihood is below 100, which suggests a lack of convergence
to the stationary distribution. For each MCMC analysis, samples were drawn from the posterior every 500 steps over a total of 2 × 107 steps,
with the first 10% of samples discarded as burn-in.

a muskox D-loop alignment (Campos et al. 2010). We
excluded three data sets from the study by Ho et al.
(2007b): the Chlorobium and nene alignments contained
too few ancient sequences for the randomization test,
whereas the muskox alignment is superseded by the
larger data set published by Campos et al. (2010). The
basic characteristics of the 18 data sets are outlined in
Table 2, with further details available in the original
publications.

Substitution models were selected by comparison of
Bayesian information criterion scores, with the num-
ber of aligned sites taken as the sample size for the
penalty term. Owing to the intraspecific nature of the
data sets, models that allowed a proportion of invari-
able sites were excluded. All data sets were treated
as unpartitioned, and a constant-size coalescent prior
was specified for the topology and divergence times.
All analyses were repeated using a Bayesian skyride
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TABLE 2. Details of aDNA alignments analyzed using the date randomization test described in the text

Sequences Result of date
(ancient + Age rangea Length Variable randomization

Species Region modern) (years) (bp) sites test

Adélie penguin Pygoscelis adeliae D-loop 96 + 380 6424 347 159
√

Arctic fox Alopex lagopus D-loop 8 + 41 16,000 291 23
√

Aurochs Bos primigenius D-loop 41 + 0 10,300 360 34
√

Bison Bison priscus D-loop 150 + 32 60,400 615 170
√

Boar Sus scrofa D-loop 81 + 7 5400 572 47
√

Bowhead whale Balaena mysticetus D-loop 99 + 68 51,000 453 72 Fail
Brown bear Ursus arctos D-loop 36 + 57 59,000 193 69

√

Cave bear Ursus spelaeus D-loop 26 + 0 53,470 288 31 Fail
Cave hyaena Crocuta crocuta spelaea D-loop 10 + 0 13,140 366 27 Fail
Cave lion Panthera leo spelaea D-loop 23 + 0 46,275 213 12

√

Cow Bos taurus D-loop 36 + 91 8065 410 65
√

Horse Equus caballus D-loop 12 + 33 28,340 348 70
√

Maize Zea mays adh2 9 + 11 4500 190 26 Fail
Moa Pachyornis mappini D-loop 14 + 0 4912 241 20 Fail
Muskox Ovibos moschatus D-loop 114 + 16 45,740 682 203

√

Tuco-tuco Ctenomys sociabilis cytb 45 + 1 10,208 253 13
√

Woolly mammoth Mammuthus primigenius D-loop 32 + 0 35,970 741 42 Fail
Woolly mammoth Mammuthus primigenius Mitogenome 11 + 0 38,030 16,484 112 Fail

aAge of oldest sequence minus age of youngest sequence.

demographic model (Minin et al. 2008). The better de-
mographic model (constant size or Bayesian skyride)
was chosen on the basis of visual inspection of the re-
sults. In each analysis, samples from the posterior were
drawn every 5 × 103 steps from a total of 5 × 107 steps,
with the first 10% being discarded as burn-in. Where
necessary, the number of MCMC steps was doubled or
tripled in order to achieve an effective sample size >100
for the rate estimate.

The sequence ages in each of the 18 aDNA data sets
were then randomly reassigned. This randomization
was performed 20 times for each data set using the Java
application SiteSampler v1.1 (Ho and Lanfear 2010).
Bayesian phylogenetic analyses were performed using
the same settings as described above for the original
data. For each date-randomized data set, the demo-
graphic model was chosen to match that selected for the
original data.

Results.—The posterior rate estimates from the 18 data
sets are shown in Figure 2. It is interesting to note that
among the 7 data sets that failed the date randomization
test not all produced rate estimates with wide 95% HPD
intervals. In these cases, the modal posterior rate was
similar to the mean posterior rate (results not shown).

To investigate the potential presence of signal-
dependent biases in these estimates, we considered
the mean posterior rates in relation to the characteris-
tics of the data sets from which they were estimated.
Debruyne and Poinar hypothesize that the mean pos-
terior rate estimate should be exponentially related to
the amount of information in the data set, as reflected
by the alignment length. We examined 4 measures of
information content: the number of aligned sites, the
number of variable sites, the number of sequences, and
the product of the number of sites and sequences in
the alignment. Excluding the mitogenome alignment of
woolly mammoths, which represents an outlier and is

nonindependent of the D-loop alignment from the same
species, we find no evidence that any of these measures
are related to the mean posterior rate estimate in the
remaining 17 aDNA data sets (r2 < 0.1 and P > 0.2
in all cases). However, more than 40% of the variation
in rate estimates could be explained by an exponential
relationship with the age range of the sequences in each
data set (r2 = 0.431 and P= 0.004).

Further insight into the temporal structure within the
data sets was gained through the date randomization
analyses. Eleven alignments passed the randomization
test and seven failed (Fig. 2; Table 2). In addition to the
results presented in this study, previous date random-
ization analyses of aDNA from tuatara (Subramanian
et al. 2009b) and elephant seals (de Bruyn et al. 2009)
have indicated that these two data sets contain sufficient
temporal information to produce meaningful estimates
of substitution rates. Among the data sets that failed the
date randomization test, the bowhead whale alignment
is noted for its low sequence diversity, with the observed
variation dominated by singleton mutations (Borge et al.
2007). The maize alignment is a small data set compris-
ing sequences sampled over a short time frame (Freitas
et al. 2003). Notably, both of the mammoth alignments
(D-loop and complete mitochondrial genome) failed the
date randomization test.

DISCUSSION

Our analyses of simulated and real data show that
the signal-dependent artifact highlighted by Debruyne
and Poinar is unlikely to have contributed substan-
tially to the published rate estimates from aDNA data
sets. Our simulated data sets cover a range of sequence
lengths and substitution rates, including those seen in
real aDNA alignments. Regardless of the prior on pop-
ulation size, the posterior mean provides an unbiased
estimate of the rate for the 1000 bp data sets simulated
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FIGURE 2. Estimates of substitution rates from a variety of aDNA alignments. For each data set, the first data point represents the rate
estimated from the original data set (filled circles), whereas the remaining 20 data points (unfilled circles) represent the rates estimated from
replicates in which the ages of the tips were randomly shuffled. Alignments were deemed to “pass” the date- randomization test if the mean
posterior rate estimate from the original data set is not included in any of the 95% HPD intervals from the date-randomized replicates. a) Rate
estimates from alignments that passed the date randomization test. b) Rate estimates from alignments that failed the date randomization test.

using a rate of 1 × 10−7 substitutions/site/year. These
parameters are broadly similar to those of the mito-
chondrial D-loop in vertebrates. For the less informative
alignments investigated here, including those simulated
using lower rates, there is some degree of estimation
bias unless the population size is fixed to its simula-
tion value. However, the rates used for the simulations
in this study are conservatively low because they are
based on phylogenetic estimates. If short-term rates
are actually elevated, as posited by the hypothesis of
time-dependent rates, then the particular estimation bi-
ases observed in this study might be irrelevant to the
majority of real aDNA alignments.

The results of our simulation analyses confirm that
the posterior mean can be a biased measure of the sub-
stitution rate, as indicated by Debruyne and Poinar.
However, the posterior estimates provide acceptable
coverage because the 95% HPD intervals on the rates
usually included the simulation value. The posterior
mode, which is equivalent to the maximum a posteri-
ori estimate of the rate, appears to be the best mea-

sure when the data set has low information content.
Nevertheless, it can become distorted when a strongly
bounded, informative prior is specified for the popu-
lation size (or, presumably, for the substitution rate or
age of the root). In view of these results, it might be
most appropriate to report various summaries of the
posterior distribution of rates and other parameters of
interest. The three measures examined here, the mean,
median, and mode, converge to the same value for the
most informative data sets.

Contrary to the claim by Debruyne and Poinar, our
analyses suggest that sequence variability is not the sole
factor determining the performance of rate estimation.
Other factors, such as the ages of the sequences, and
probably the structure of the underlying genealogy, are
also very important features of any aDNA data set.
Evidently, the population size prior is highly influen-
tial in some of the analyses performed here. From a
practical viewpoint, it is usually more feasible to use
an informative prior for the age of the root rather than
the population size. This is because effective population
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size and generation time are often difficult to estimate
reliably, whereas the age of the root can sometimes be
inferred from independent palaeontological or biogeo-
graphic sources.

Taking into account the results of all the date random-
ization analyses, the sampling ages of seven real aDNA
data sets (bowhead whale, cave bear, cave hyaena,
maize, moa, woolly mammoth D-loop, and woolly
mammoth mitogenomes) were found to produce ar-
tifactual rate estimates using the date randomization
test. This result suggests that some of the published
aDNA alignments do not contain sufficient temporal
information to support reliable estimation of rates and
timescales. Randomization of sequence ages represents
a potentially useful technique for investigating the va-
lidity of rate estimates from heterochronous data, in-
cluding those from aDNA and serially sampled viruses
(de Bruyn et al. 2009; Miller et al. 2009; Subramanian
et al. 2009b; Firth et al. 2010).

It is interesting to note that the alignment of com-
plete mitochondrial genomes from woolly mammoths
failed the date randomization test. This suggests that
the analyses performed by Debruyne and Poinar might
be misleading, being based on a data set that is unable
to yield plausible posterior estimates without strong
prior information on the population size or root age.
There are probably several reasons for the poor perfor-
mance of the mammoth mitogenomic data set. First, the
alignment comprises only a small number of sequences.
Second, the mitochondrial tree of mammoths has a
highly unusual structure, with a very deep split sepa-
rating the two major clades (Gilbert et al. 2008). This is
reflected in the imprecision of the date estimates that
are obtained when only the ages of the tips are used
for calibration (Debruyne et al. 2008; Gilbert et al. 2008;
Debruyne and Poinar 2009). Third, mammoth mito-
chondrial DNA has evolved at an exceptionally low
rate, a phenomenon that is mirrored in the mammoth
nuclear genome (Hofreiter 2008; Miller et al. 2008). For
example, the substitution rate in elephantids has been
much lower than that in hominoid primates, which
in turn have been evolving more slowly than other
primates (Steiper et al. 2004). This also calls into ques-
tion the analyses performed by Debruyne and Poinar
in which subsamples of the mammoth mitogenomes
were assumed to be representative of typical aDNA
alignments. In practice, short aDNA alignments have
almost exclusively come from the D-loop, which is the
most variable portion of the vertebrate mitochondrial
genome. The subsampling procedure used by Debruyne
and Poinar will tend to include portions of the mi-
togenome that are evolving much more slowly, leading
to exceptionally uninformative data sets.

Debruyne and Poinar recommend that the bias due
to signal dependence can be overcome through the em-
ployment of “deep” calibrations, for example, at the
root of the tree. Often, this is neither possible nor appro-
priate in analyses of heterochronous data. If rates were
truly time-dependent, then such analyses would need
to be performed in a relaxed-clock framework to allow

the rate to vary between younger and older branches
(Korsten et al. 2009). If a strict molecular clock is as-
sumed, as in the analyses done by Debruyne and Poinar,
then rate homogeneity across different timescales is in-
voked as an a priori assumption. Therefore, although
this would seemingly address the problem posed by
time-dependent rates, it only does so by assuming that
the problem does not exist (Ho et al. 2007c). A suggested
solution to this problem is to limit the analysis to third
codon sites or synonymous sites, which are putatively
subject to a much lesser degree of selective constraint
(Briggs et al. 2009; Subramanian et al. 2009a; Endicott
et al. 2010). In any case, reliable internal-node calibra-
tions are rarely available in population-level analyses
(Ho and Phillips 2009).

Although we have demonstrated that time-dependent
rates are unlikely to be driven by a signal-dependent ar-
tifact, the findings obtained in the present study do
not necessarily validate published estimates of rates
from aDNA data. Such estimates can be detrimen-
tally affected by a variety of other confounding fac-
tors, including misspecification of the demographic
model (Emerson 2007; Ho et al. 2007c; Miller et al.
2009; Navascués and Emerson 2009; Subramanian et al.
2009b). Furthermore, postmortem damage can produce
spurious polymorphisms in aDNA sequences, which
can lead to biased estimates of rates (Ho et al. 2005,
2007a). Samples in several of the data sets have not been
directly radiocarbon dated, but their ages have been
inferred by stratigraphic correlation (layer dating). Rate
estimates from these data sets, including the arctic fox,
Adelie penguin, aurochs, boar, maize, and tuco-tuco,
will be somewhat less reliable than those from data sets
with directly dated samples. However, higher rate esti-
mates have been obtained from a wide range of aDNA
data sets, sourced from a variety of taxa with different
demographic histories and biological characteristics, in-
dicating that they should not be dismissed lightly. Com-
bined with the exceptionally high rates estimated in
studies of pedigrees and mutation accumulation lines,
these results suggest that further empirical and theo-
retical investigations into the nature of time-dependent
rates could be productive.

By their very nature, most aDNA data sets have low
information content. Although the situation is changing,
as high-throughput sequencing techniques allow com-
plete mitochondrial genomes to be sequenced from con-
specific individuals (Gilbert et al. 2008; Briggs et al. 2009;
Stiller et al. 2009; Ho and Gilbert 2010), short alignments
are likely to remain a common feature of aDNA studies
in the near future. In these studies, the important ques-
tion is not whether the information content is low, but
whether it is sufficient for performing the analyses of
interest.
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