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Abstract

Background

Partitioning involves estimating independent models of molecular ewol@idr different
subsets of sites in a sequence alignment, and has been shown to ipipymgenetid
inference. Current methods for estimating best-fit partitioninge®es, however, are only
computationally feasible with datasets of less than 100 loci. Bhi& problem because
datasets with thousands of loci are increasingly common in phylogenetics.




Methods

We develop two novel methods for estimating best-fit partitioniogemes on large
phylogenomic datasets: strict and relaxed hierarchical eclngt These methods use
information from the underlying data to cluster together sim#ubsets of sites in an
alignment, and build on clustering approaches that have been proposed elsewhere.

Results

We compare the performance of our methods to each other, and to emistingds for
selecting partitioning schemes. We demonstrate that whitd kigrarchical clustering has
the best computational efficiency on very large datasets, ectléerarchical clustering
provides scalable efficiency and returns dramatically betteitipaing schemes as assessed
by common criteria such as AICc and BIC scores.

Conclusions

These two methods provide the best current approaches to inferrinigmag schemes fdr
very large datasets. We provide free open-source implementatiothe methods in the
PartitionFinder software. We hope that the use of these methddkellto improve the
inferences made from large phylogenomic datasets.
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Background

Choosing an appropriate model of molecular evolution (model selectiam)important part
of phylogenetics, and can affect the accuracy of phylogermets,tdivergence dates, and
model parameters [1-11]. One of the most important aspects of saldetion is to find a
model that can account for variation in the substitution process arhengites of the
alignment. This variation may include differences in ratesrofution, base frequencies, and
substitution patterns, and the challenge is to account for all suelisarfiound in any given
dataset. There are many different ways to approach this problemmich the simplest and
most widely used is partitioning. In the broadest sense, partitianirgves estimating
independent models of molecular evolution for different groups of sitesialignment.
These groups of sites are often user-defined (in which casallstbem ‘data blocks’ here),
for example based on genes and codon positions [7]. It is also inchgasingnon to refine
user-defined partitioning scheme by combining similar data blocks dgucally [2]. A vast
number of phylogenetic studies have used partitioned models of moleealation, and it is
widely appreciated that partitioning often leads to large improx&srad the fit of the model
to the data (see e.g. [2]). Many studies also report that partitioninghpesved phylogenetic
inference, including the estimation of tree topologies, branuythe, and divergence dates
[6,10,12-14].



Partitioning is one of many methods to account for variation in sutistitprocesses among
sites. Some approaches automatically assign sites to diffstdstitution models (e.g.
[15,16]), and others estimate more than one model of molecular evolotieadh site (e.g.
[17-19]). Many of these methods are better and more elegant thimmrthef partitioning we
focus on here, because they do not rely on user-defined data blocks andreaeffectively
scale to the true variation in substitution processes present datdeHowever, partitioning
remains the most widely-used method to account for variationtes r@nd patterns of
substitution among sites [9,17,20,21]. Its enduring popularity is part histodntingency
and part practical: many of the superior methods are more racdritave not yet become
widely adopted, and partitioning is implemented in many popular gbsketic inference
programs. Most importantly for this study, partitioning is still thest practical method with
which to account for variation in rates and patterns of substitutiorenyn large datasets.
Because of this, it is important that we work to ensure thédtipaed models of molecular
evolution are as accurate as possible, particularly when theypplied to large datasets, and
that is the focus of this study.

It is important to note that all of the commonly used methods to acéourgriation in
substitution patterns among sites (including partitioning) assinaie sequences evolved
under a stationary, reversible, and homogeneous process. These assuanpi@tessary to
make the methods efficient enough to allow for searches of phykg&ee space, although
they are far from guaranteed to hold for empirical datasegs [22]). It is possible to relax
these assumptions, but the computational cost of doing so is extreigleland precludes
effective tree searches in all but the simplest casesorShd time being it is necessary to
make these assumptions in order to estimate tree topologies from very largesdatas

The biggest challenge in partitioning is to select the most apptegrartitioning scheme for
a given alignment, i.e. to divide the alignment into groups of ditsaiccount for variation
in patterns of molecular evolution, while avoiding over- or under-paraisegion [2,4]. To
select a partitioning scheme, phylogeneticists typica#iyt ©y grouping together putatively
similar sites in an alignment into homogenous data blocks, aspngpri knowledge of the
variation in patterns of molecular evolution among sites [7,10]. Théeokal is then to find
an optimal partitioning scheme by combining sufficiently simiita blocks, which is
usually done by finding the combination of data blocks that minimigestdac such as the
corrected Akaike’s Information Criterion (AICc) or the Bayesiaformation Criterion (BIC)
[2]. For smaller datasets of up to about 100 initial data blocks, thisisgtion step can be
achieved automatically using a greedy heuristic search #gorimplemented in the
software PartitionFinder [2]. However, recent reductions in DNjAisecing costs mean that
it is now routine to produce very large ‘phylogenomic’ datgsétich can contain hundreds
or thousands of loci [23-25]. Current methods [2] are not computationattieatfenough to
estimate partitioning schemes for these datasets. For exathplegreedy algorithm
implemented in PartitionFinder would have to analyse almost @omilubsets of sites to
estimate the optimal partitioning scheme for a sequence alignohérf00 protein-coding
loci, which is well beyond the bounds of practicality. This ig@bjem, because we have no
methods to optimise partitioning schemes for the largest, and ptdyemiest useful, datasets
in phylogenetics.

Hierarchical clustering is a statistical method that hasies attractive properties for
optimising partitioning schemes for phylogenomic datasets. To asarthical clustering to

optimise partitioning schemes, molecular evolutionary parametech @s base frequencies
and rates of molecular evolution) are first estimated for eaitialidata block, and data



blocks are then combined based on the similarity of their paramestierates. Hierarchical
clustering and related methods (such kasieans clustering) have been used to select
partitioning schemes in a number of previous studies with datakearious sizes [4,26-30].
Hierarchical clustering is far more computationally eéfiti than the greedy algorithm
implemented in PartitionFinder: if N is the number of data blapecified by the user,
hierarchical clustering i©(N), while the greedy algorithm ®(N%). For example, with an
alignment of 1000 protein-coding genes, the strict hierarchical chgt@pproach we
describe below requires the analysis of only 1999 subsets of s@#esn{ethods, below),
which is more than 3 orders of magnitude more efficient than existing approaches.

One drawback of hierarchical clustering is that a-priori datsshave to be made about the
best way to determine the ‘similarity’ of different datadis. Researchers typically estimate
up to four parameter categories for each data block: (i) anetea to describe the overall
substitution rate of that data block (often called a rate m@i)plfii) one or more parameters
to describe the relative rates at which nucleotides replateotiaer (e.g. the 6 parameters of
the General Time Reversible (GTR) model, known as the ratexjndtii) parameters to
describe the proportions of nucleotides or amino acids in the data(blase or amino acid
frequencies); and (iv) one or two parameters to describe ttndodii®n of substitution rates
among sites (a proportion of invariant sites and/or an alpha paragesigibing a gamma
distribution). In principle, data block similarity can be definechgsany combination of
these parameters. However, different studies have used differantgiar combinations, and
there has been no attempt to systematically understand thedyest define the similarity of
different data blocks when estimating partitioning schemes [4,26-30].

In this study, we set out to investigate the performance ofrbiecal clustering approaches
for optimising partitioning schemes for phylogenomic datasets. fWgé developed a
generalised strict hierarchical clustering method thaiwall the user to define relative
importance of different model parameters when defining the sityilair subsets. We found
that the choice of weighting scheme can have very largetefbn the performance of the
algorithm, and that regardless of the weighting scheme striartiecal clustering always
performed substantially worse than the existing greedy abgoritTo remedy this, we
developed a new method, which we call relaxed hierarchical chgtehat incorporates
many of the benefits of strict hierarchical clustering whégoiding many of its
disadvantages. We show that relaxed hierarchical clustering fautpsrstrict hierarchical
clustering on all of the datasets that we examined. The computational demansisnatkiad
can be scaled to the dataset and computational resources avdiliahleeriefore a pragmatic
approach to estimating best-fit partitioning schemes on phylogendatésets, where more
rigorous methods are computationally infeasible.

We have implemented all of the methods described in this stutlg iopen-source software
PartitionFinder, which is available for download from
www.robertlanfear.com/partitionfinder. The PartitionFinder source c¢sdavailable from
https://github.com/brettc/partitionfinder/.



Methods

Terminology

Following previous studies [2,4], we define a “data block” as a useifispeset of sites in

an alignment. A data block may consist of a contiguous set of(sitesan intron), or a non-
contiguous set (e.g™todon positions of a protein coding gene). A “subset” is a collection of
one or more data blocks. Therefore, all data blocks are also suhsgetise converse is not
true. A “partitioning scheme” is a collection of subsets thdudes all data blocks once and
only once. We do not use the term “partition” because it has comflicheanings in
phylogenetics and set theory — in phylogenetics a “partitisnised colloquially to denote
what we call a “subset” here, whereas in set theory it defivieat we call a “partitioning
scheme” [2].

Strict hierarchical clustering algorithm

We developed a strict hierarchical clustering algorithm indplvg a popular previous
implementation [4], with some improvements. This algorithm iseex¢ly efficient — given a
set of N initial data blocks it creates a set of N partitigrechemes with between 1 and N
subsets, and then selects the best partitioning scheme fronetthifie algorithm has seven
steps, which we summarise here and describe in more detail below:

1. Estimate a phylogenetic tree topology from the sequence alignment;

2. Start with a partitioning scheme that has all user-defined data bloakseaist®
independent subsets;

3. Calculate the ML model parameters and log likelihood of each subset in the current
partitioning scheme;

4. Calculate the similarity of all pairs of subsets in the current partigsgheme;

5. Create a new partitioning scheme by combining the two most similar subgetscurrent
partitioning scheme;

6. Return to step 3, until a partitioning scheme with all sites combined into a singleisubs
created (i.e. terminate after N iterations);

7. Choose the best-fit partitioning scheme based on information theoretic metrics

In principle this algorithm could be applied to DNA or amino aalgnments, but for
simplicity we focus only on DNA alignments in this study.

All ML calculations in this algorithm are performed with adified version of RAXML [21]
available at https://github.com/brettc/standard-RAXML becauseMRAs the most widely-
used and computationally efficient software for analysing mdhe large alignments. We
substantially modified the PartitionFinder code (https://github.conéfpattitionfinder) to
enable it to perform model selection and partitioning schemetiegieby calling RAXML,
and parsing the output produced by RAXML.

In step 1 of the strict hierarchical clustering algorithre, @stimate a maximum parsimony
(MP) starting topology in RAXML which is then fixed for thest of the analysis. Fixing the
topology is crucial in increasing computational efficiency whearching for best-fit
partitioning schemes [2]. Although MP is known to perform poorlytireato maximum
likelihood (ML) when estimating phylogenetic trees, previous stutl@ve shown that any



non-random tree topology is adequate for accurate model selection [3le88ithe¢less, our
implementation of this algorithm in PartitionFinder allows usersgecify a starting tree
topology calculated using any method, so that datasets for whichaslRnown issues may
still be analysed rigorously.

In step 2 we calculate the log likelihood and parameteess ®TR + G model on each new
subset of sites using RAXML. A new subset of sites is defised subset that the algorithm
has not yet encountered. The log likelihood and ML parameters of elasét sire then stored
in memory so that they do not have to be recalculated in subseqestioits of the
algorithm. We use the GTR + G model rather than the GTR 6€Imodel because the ‘I
parameter, which describes the proportion of invariant sites, inaepéndent from the ‘G’
parameter, which describes the gamma distribution of rates att@ssmaking it impossible
to estimate both parameters accurately [33]. This dependencyedretvc’ and ‘I’
compromises attempts to infer the similarity of subsets ubieig parameter estimates (step
3). In principle, however, step 2 could include the selection of thenbasel of molecular
evolution for any given subset.

In step 3 we calculate the similarity of subsets basedh@n ML model parameters. To do
this, we group parameters into four categories and use a distatce that allows users to
specify the relative importance of different parameter goates. The four parameter
categories are: (i) the overall rate of evolution of the sulesétulated as the sum of the
maximum likelihood branch lengths for that subset; (ii) the 6 pasamef the General Time
Reversible (GTR) model; (iii) the four base frequencies; andtlfe alpha parameter that
describes the gamma distribution of rates across sites. The paranogtecstiegories (ii) and
(iif) are not independent of each other, but we include both because we Haveoprior
information on which parameters are more important, or which beynost useful for
optimising partitioning schemes. To calculate the similaritplbpairs of subsets, we first
calculate a pairwise Euclidean distance matrix for eacheofdur parameter categories. We
then normalise each distance matrix so that the maximunmcisis one, and then scale each
matrix by a user-specified weight (set using the ‘--weigltsimmand line option in
PartitionFinder v1.1.0). The similarity of a pair of subsets is ta¢culated as the sum of the
distances across the four matrices, which gives the Manhattaty biock distance between
a pair of subsets. In this approach, the user-specified weightahetearal interpretation as
the relative importance of different parameters in defining subset stynila

This approach to calculating subset similarity has a number ohtad)es over previous
methods. Many previous approaches have used fewer than the fgoriestave define to
calculate subset similarity, and most have implicitly assutm&idall parameter categories are
equally important in determining subset similarity [4]. In corifrasr method allows for any
combination of parameter categories to be specified, and forl#tveemportance of each
category to be specified. For example, a parameter categioryecexcluded from similarity
estimates by setting its weight to zero. Similarly, aiameter category can be defined as
tenfold less important than other categories by setting itghives 0.1, and the weights of the
other categories to 1. Another limitation of previous clusterpy@aches is that they have
estimated the parameters of larger subsets directly frompataneter estimates of subsets
they contain [4]. This approach is problematic because it is uliffto predict how the
information in two smaller subsets will combine to determine thanpeters of the larger
subset, and simply averaging the ML parameters of the sreallsets is unlikely to produce
parameters close to the ML parameters for the larger suhs#hermore, variance in the
parameter estimates of the smaller subsets may limitabeuracy in the first place [2]. Our



approach circumvents these problems by calculating ML parameteatsifor every subset
that is analysed, including subsets that were created byngdogjether two smaller subsets.
This approach ensures that the hierarchical clustering procedaseascurate as possible,
given the limitations of estimating model parameters from finite datasets

In each step of our algorithm, we find the most similar pair ulifsets from the focal
partitioning scheme (step 4), and then merge these subsetat® a&meew subset and a new
partitioning scheme (step 5). In this manner, the algorithm itenatimetges subsets to create
a set of N partitioning schemes from N initial data blocks. These N schemes ¢amal to

N subsets. The final step of the algorithm (step 7) simply invaeegaring the information
theoretic score (e.g. AIC, AICc, or BIC) of all N partitionisghemes, and choosing the
scheme with the best score. Choosing the best partitioning sah@@senot involve any
further ML calculations, because the log likelihood of each pawiitg scheme can be
calculated from the sum of the log likelihoods of the subsets contained in that s2heme [

Relaxed hierarchical clustering algorithm

The strict hierarchical clustering algorithm is computationaifcient, but it has some
obvious drawbacks. First, it can merge subsets that make the itiorrtieeoretic score of a
partitioning scheme worse, rather than better. This is becauseish@ guarantee that any
given measure of ‘similarity’ will translate into an improvere the information theoretic
score. Second, even if a given similarity measure does tramstatrobust improvements in
the information theoretic score, the algorithm may be mislednwhe accuracy of ML
parameter estimates is limited, as can be the case with small §@hsets

To overcome these limitations, we propose a relaxed hierarchisééring algorithm. This
algorithm has eight steps:

1-4 Identical to strict hierarchical clustering
5 Select the top P% of most similar subset pairs;
6 Create S new partitioning schemes, each of which includes one of the sulssebipair

step 5;

7  Choose the partitioning scheme from step 6 with the best information-theoregic scor
(AIC, AlCc, BIC);

8 Return to step 3, until no further improvements in the information theoretic score are
found,;

Steps 1-4 proceed precisely as in the strict hierarchical whgst@gorithm. In step 5 we
create a ranked list of all possible subset pairs from therdupartitioning scheme, where
the rank is defined by the similarity of the subsets. We tisena user-defined percentage, P
(‘--rcluster-percent’ in PartitionFinder), to choose the S minsiiaz subsets pairs. In step 6
we create a new partitioning scheme for each of the S sulis&t [pa merging the two
subsets in each pair and calculating the new log-likelihood andmuaxilikelihood
parameter estimates. In step 7, we calculate the informatioretleescore (AIC, AICc, BIC)

of each of the S new partitioning schemes, and select thaguaintif scheme with the best
score. The algorithm then iterates (step 8) until no furtherawgonents in the information
theoretic score can be found.

The key difference between the relaxed and strict hierafctligstering algorithms is the
ability to set the parameter P, which controls the thoroughneskeoheuristic search



algorithm. When the P is set to 0%, the relaxed clustering tdgowill behave similarly to
the strict hierarchical clustering algorithm, and only evalube single partitioning scheme
that includes the most similar pair of subsets (although it diffiesofar as the relaxed
clustering algorithm is a hill-climbing algorithm, while theidt hierarchical clustering
algorithm is not). When P is set to 100%, the relaxed clusterggyitim will behave
similarly to the existing greedy algorithm in PartitionFind2], and evaluate all possible
subset pairs at each iteration of the algorithm. Larger valde® avill take more
computational time, but are also likely to produce better solutioraubecahey will search
the space of partitioning schemes more thoroughly. In prelimimatyses we observed that
even very small values of P (e.g. 0.1-1.0 percent) can often ledlde taliscovery of
partitioning schemes that dramatically outperform those foundhbystrict hierarchical
clustering algorithm.

Datasets

As described above, we expect both of the new methods we desceb® Iperform worse
than the greedy algorithm implemented in PartitionFinder, simpbalise they are less
thorough heuristic searches. The true utility of the new methods fend partitioning
schemes for datasets that are too large to analyse vistingxmethods [2]. Nevertheless, to
properly assess the new algorithms described here, it is necessanyp@are them to existing
approaches. Because of this, we focussed our analyses on davavgath we could apply
both the new and existing methods.

We used 10 publicly available datasets (Table 1) to compare thterahg methods to
existing approaches. These datasets comprise a range evkemlifsequence types (exons,
introns, rRNAs, mithochondrial DNA, nuclear DNA), and come from a eanifgdifferent
taxa. The largest dataset comes from a phylogenomic stuzsdsf(Hackett 2008, Table 1),
and comprises 171 taxa, 52383 sites, and 168 data blocks. This datéssd t® the upper
size limit of datasets that can be analysed using the grdgdyittam implemented in
PartitionFinder 1.1.0 [2], so represents the practical limit ofse#tathat we can include in
this study. In two cases (the Fong_2012 and Pyron_2011 datasets, Tallegeduced the
number of taxa in the original dataset, by removing the tathatihe most gaps, in order that
we could analyze the dataset using the greedy algorithm itid?efinder. Precise details of
the taxa we removed are provided in the FigShare repository dssowdh this article
(http://dx.doi.org/10.6084/m9.figshare.938920). Removing taxa does not reduce the
complexity of the task of selecting partitioning schemes, butplyi reduces the
computational burden of analysing each subset. Note that this is domitle a suitable set
of test datasets for comparing new and old methods, and we do not engaplyt that
partitioning schemes estimated from reduced-taxon datasets shawgddden the full-taxon
dataset. All of the datasets, as well as the associated ihgmtfdr PartitionFinder, are
available from Figshare (http://dx.doi.org/10.6084/m9.figshare.938920), andnede for
the datasets and the studies that they are associated with are provided in Table 1.



Table 1Details of the 10 datasets used in this study

Dataset name Clade Clade (Latin)  taxa sites Data blocks Study reference Dataset
(common) reference
Ward_2010 Ants Dolichoderinae 58173 27[34] NA
Wainwright_2012  Fishes Acanthomorpha 18839 30[35] [36]
Pyron_2011 Amphibians  Amphibia 12712 34[37] [38]
Li_2008 Fishes Actinopterygii 567995 30[4] NA
Leavitt 2013 Grasshoppers Acridoidea 15404 87[12] NA
Kaffenberger 2011 Frogs Gephyromantis 6848 26[39] [40]
Irisarri_2012 Frogs Neobatrachia BY136 34[41] [42]
Hackett_2008 Birds Aves 15P383 168[43] NA
Fong_2012 Vertebrates Vertebrata 26919 168[44] [45]
Endicott_2008 Humans Homo sapiens 12857 41[46] NA

The original study describing each dataset is eefegd, the dataset itself is also referenced whéarchived
under a separate DOI.

Analyses

We exhaustively compared the two new algorithms to existingnadstusing the largest
dataset in this study (Hackett 2008, Table 1). Based on the refuliese analyses, we
compared the two new algorithms to existing methods acrosenhéatasets described in
Table 1. The analyses were run in PartitionFinder version 1.1.0 witloltbeiing settings
common to all analyses: we used the RAXML version of Partitraie¥i developed for this
study (i.e. using the ‘--raxml’ commandline option, see above),usecthe older PhyML
version of PartitionFinder is not computationally efficient enoughneyae the very large
datasets that are the focus of this study (see above); Blé@savere performed twice — once
with model selection performed under the AICc, and once under the Bl2aach lengths
were set to ‘linked’ in all analyses, meaning that reldtnach lengths were estimated at the
start of the analysis using a GTR + G model in RAXML, and thase relative branch
lengths were then fixed for the rest of the analysis, watthesubset afforded its own rate
multiplier to account for differences in rates of evolution leetwsubsets [2]; only the GTR
+ G model of evolution was considered (see above). We do not considgseanasing the
AIC, because the AICc should be preferred to the AIC in all cases [47].

We note that the approach we have implemented here, using a rapiienaind a single set
of molecular branch lengths, does not allow for heterotachy (wariat the pattern of rates
among sites over time), although this is known to be an importantesodi variation in
patterns of substitution [1,11]. In principle, our approach can account feroteethy by
allowing each subset to have an independent set of branch lengtlisareh be achieved
in PartitionFinder by setting ‘branchlengths’ option to ‘unlinked’. Howgue practice this
way of accounting for heterotachy adds so many parametehne toverall model that it is
inferior to using a rate multiplier. A better approach is toaisevarion model or a mixture
of branch lengths [1,11], but since our focus here is producing parigiechemes for very
large datasets that can be subsequently analysed in RAXML, ared reiiber of these
models is available in RAXML, we do not consider them further here.

For every analysis, we recorded: (i) the best partitionifgerse and it's information
theoretic score (i.e. AICc or BIC score); (i) the informatitreoretic score of each
partitioning scheme visited by each algorithm during the heuissiarch; and (iii) the time
taken to complete the analysis on a desktop a Mac Pro with 2 2.26GHz Quad-Core Intel Xeon
processors and 32GB RAM. The details of the absolute computationaé t@me not



important, but a comparison of the analysis times is informateeel{slow) because it allows
us to empirically compare the computational efficiency of the different methods

Analyses using the phylogenomic bird dataset

For the phylogenomic dataset from birds we first removed a8 gitthe alignment that were
removed by the original authors [43], and then defined data blocks basadhomteon, and
each codon position in each exon. This resulted in a total of 168 data Bldekten
performed a total of 12,002 searches for partitioning schemes on thsetjadescribed
below.

We performed 2 searches for optimal partitioning schemes tisengreedy algorithm [2]:
one with the AICc, and one with the BIC.

We performed 2000 searches for optimal partitioning schemes tgnstrict hierarchical
clustering algorithm described above. The 2000 searches compriseeHd00es using the
BIC and 1000 using the AICc, where each search used one of 1000 distinct clustggirig we
(the ‘--weights’ commandline option in PartitionFinder). The dusgy weights are defined
by a vector of four numbers that specify the relative importahéeur parameter categories
(the overall subset rate, the base frequencies, the GTR moaehgiars, and the alpha
parameter of the gamma distribution; see above). Analysing 1006f setsghts allows us to
empirically compare the performance of different weightiolgesnes, and to determine the
relative importance of the different parameter categoriesnvdearching for partitioning
schemes, as well as the variation in the algorithm’s perforenander different weighting
schemes. The first 15 sets of weights comprise all possible watidns of setting at least
one weight to 1.0, and other weights to 0.0 (setting all weights to GiOnsensical, as it
would lead to all subsets appearing to be equally similar). Tiegsesent 15 of the 16
corners of a four dimensional hypercube, and allow us to compare tlasd$Hwhere either
all parameter categories are given equal weight (i.e. -higeig, 1, 1, 1”) or where one or
more parameters are given zero weight (e.g. --weights “1, 0, 0, 1”). The98theoints were
chosen using Latin Hypercube Sampling in the ‘lhs’ package, ve@sibin R [48]. This
procedure ensures that the sampled points are relatively ewdestiyouted in four-
dimensional space, and is a more efficient way of sampling-diilgensional space than
using a grid-based sampling scheme.

We performed 10,000 searches for optimal partitioning schemes tsimglaxed clustering
algorithm described above. These 10,000 searches comprised 5000 seanghine UsSICc,

and 5000 using the BIC, each of which was performed with 1000 different clusteringsweight
and at 5 different values of the parameter P. The 1000 weighting esh@enused were
identical to those used above, and the values of the parameter P (which definestitageerc
of possible partitioning schemes that are considered at each stiee laxed clustering
algorithm) that we used were 1%, 2%, 5%, 10%, and 20%.

The results of all 12002 analyses presented here are availabld-igahare
(http://dx.doi.org/10.6084/m9.figshare.938920).

Analyses across all datasets

Based on the results of our analyses of the phylogenomic bird datesstt some pragmatic
default values for the clustering weights and the P paranssterbelow). We then analysed



the performance of the greedy algorithm, the strict hiereatlsiustering algorithm, and the
relaxed hierarchical clustering algorithm across all 10 dataséiable 1 using these default
settings. We compared both the computational time and the perfornoana three
algorithms across all 10 published datasets. This involved a tddal afialyses: 10 datasets,
2 information theoretic scores (AICc, and BIC), and 3 algoritfgnsedy, strict clustering,
and relaxed clustering). Details of all of the datasetsgiven in Table 1, input files for
PartitionFinder, and results of these analyses are availabten frFigshare
(http://dx.doi.org/10.6084/m9.figshare.938920).

Results and discussion

All three algorithms we discuss in this paper start with a-debned set of data blocks, and
progressively merge data blocks to improve the information-theoretice sof the
partitioning scheme. Better algorithms will lead to largeprovements in the information
theoretic score. We discuss algorithm performance below in twe:wayterms of the
amount (in AlICc or BIC units) that they improve the score opmtitioning scheme relative
to the starting scheme which has each data block assignedndegemdent subset; and in
terms of the percentage improvement that an algorithm achieledsve to the existing
greedy algorithm in PartitionFinder. Thus, a good algorithm will scoreyhahboth counts.

Strict hierarchical clustering

The strict hierarchical clustering algorithm performed substiyntworse than the greedy
algorithm on the phylogenomic bird dataset (Figure 1, Table 1).\Wdssthe case regardless
of the way in which subset similarity was defined, or whethetitioming schemes were
selected using the AICc or the BIC (Figure 1). The gredglyrithm improved the AICc and
BIC scores of the partitioning scheme by 1689 and 13013 units regbgcfieross all 1000
different sets of clustering weights analysed, the bestrgpartitioning schemes found by
the strict hierarchical clustering algorithm improved the Al BIC scores by 376 and
9347 units respectively (Figure 1). These improvements representaBd%2% of the
potential improvement in AICc and BIC scores estimated from the greeutytlag.

Figure 1 The strict clustering algorithm performs poorly, but the relaxed clusteing

algorithm performs almost as well as the greedy algorithmAll analyses were conducted

on a phylogenomic dataset of birds (Table 1, Hackett _2008). Note that lower scor&@ indic
a better fit of the model to the data. The dashed line in each plot shows the score sif the be
partitioning scheme found by the greedy algorithm. Each boxplot represemdttitaition of
scores for 1000 runs of the strict or relaxed clustering algorithms, whéreusagses a

different definition of the similarity of two subsets (see main text). hed shows that the
relaxed clustering algorithm’s performance approaches that of teéygaégorithm as P
increases, and that analysing 10% of partitioning schemes results in inforthairetic

scores that are very close to that of the greedy algorithm.

The performance of the strict hierarchical clustering algaorialso varied substantially
depending on the way in which subset similarity was defined. Aalb4900 different sets
of clustering weights analysed, the worst-scoring partitigrichemes found by the strict
hierarchical clustering algorithm improved the AICc and BIC stdrg 42 and 862 units
respectively (Figure 1). These improvements represent 2% and 7%eopotential
improvement in AlCc and BIC scores estimated from the greddgrithm. The mean



improvement in AlCc and BIC scores across all 1000 differento$etsistering weights was
8% and 51% of the potential improvement in AICc and BIC scores.

The weights used to define subset similarity have a completoredhip to the performance
of the strict hierarchical clustering algorithm. Figure 2 shdvet the performance of the
strict hierarchical clustering algorithm was better whenvibghts given to the overall rate
of a subset and the alpha parameter were higher, and when the giggn to the base
frequencies of a subset was lower. However, all of theseorgdhips show substantial
variation. Furthermore, the set of weights that resulted in thghggioning scheme (shown
in red dots on Figure 2) differed depending on whether the AICc oBifiewas used to
evaluate partitioning schemes, and would be very difficult to préchm first principles.
One of the clearest results from this analysis is that gngupigether subsets based on their
base frequencies always led to worse performance for trasedgfFigure 2). This suggests
that base frequencies can provide misleading information on subvsketrity. This is likely
to be most severe when subsets are small and base frequeacestiraated from limited
data, which in turn will be most problematic at the start of the algorithm.

Figure 2 The performance of the strict clustering algorithm varies dramatically
depending on the weighting schemes used to define subset similariThe Y axis shows
the difference in the AICc or BIC score compared to the best scheme found tricthe s
hierarchical clustering algorithm on the phylogenomic dataset from {{iedde 1). The X
axes show the weights assigned to each of four parameter classes usiee sutsét
similarity. Each panel shows 1000 data points, where each datapoint represegits raisi
of the strict hierarchical clustering algorithm under a particular weiglsitheme. The set of
four weights under which the best scheme was found by the strict hierartistatiog
algorithm are shown in red.

These results suggest that in most practical cases (in wiainl fawer than 1000 different
definitions of subset similarity would be compared), the strigranchical clustering
algorithm is likely to perform very poorly. Although some methods dfnohg subset
similarity performed better than others, our results suggesthbet is no one method of
defining subset similarity that works well for the duration of &lgoorithm. This is likely to
be because the parameters of molecular evolution that we are abdasure (overall rate of
evolution, base frequencies, GTR model parameters, and alpha payaretsot sufficient
to determine whether clustering a given pair of subsets wililrén an improvement of the
AICc or BIC scores. As a result, the algorithm often cludtagsther subsets that result in a
worsening of the AICc or BIC score. This problem is compounded byatttethat it is
difficult to predict, either from first principles or empiridaists (Figure 2), the best way to
define subset similarity given the parameters that we can measure.

Performance of the relaxed hierarchical clusteringalgorithm

The relaxed hierarchical clustering algorithm performed béii@n the strict hierarchical
clustering algorithm; its performance approached that of thstirgx greedy algorithm
(Figure 1). When 20% of all possible partitioning schemes wenmiard, the best-scoring
partitioning schemes found by the relaxed hierarchical clagtaalgorithm improved the
AICc and BIC scores by 1565 and 12655 units respectively (Figure 1) Tthpsovements
represent 93% and 97% of the potential improvement in AICc and BlCssestimated from
the greedy algorithm.



The performance of the relaxed hierarchical clustering algoritnproved as the percentage
of schemes examined was increased (Figure 1). When 1% of all possiblerpagitichemes
were examined the mean improvement in AlICc and BIC scores 8&asand 8903 units
respectively. These improvements represent 46% and 68% of the padtept@ement in
AlICc and BIC scores estimated from the greedy algorithmsd& lmprovements increased
with the percentage of all possible partitioning schemes tha eemined, rising to >80%
when 10% of schemes were examined, and >90% when 20% of schemesamaresd. In
Figure 1, this is demonstrated by the AICc and BIC scom® fihe relaxed clustering
algorithm approaching those from the greedy algorithm as BPases. Concomitant with this
improvement, dependence of the relaxed hierarchical clusteigogitam on the way in
which subset similarity is defined decreased as the pereermdhgschemes examined
increased (demonstrated by the reduction of the height of the boxes in Figure 1).

These results suggest that although our estimates of subderiginaire highly imperfect,
they do contain information that can be used to help optimise parigi@ihemes more
efficiently. Unlike the strict hierarchical clustering algiom, the relaxed hierarchical
clustering algorithm does not rely solely on the estimated aiityilof subsets in order to
decide whether to cluster them together. Instead, it considetteetion of the most similar
pairs of subsets and then chooses the pair that gives the langesvement in the AICc or
BIC score. This approach circumvents the limitation of thectstrierarchical clustering
method by reducing the reliance of the algorithm on the estimates of subsattgimi

The performance of the strict and relaxed clusterig algorithms on 10 datasets

To ensure that the results we obtained on the phylogenomic dafabetds were not
idiosyncratic to a single dataset, we compared the strict #&dkdeclustering algorithms to
each other and to the greedy algorithm on a collection of 10 dat@sdtle 1). In these
analyses, we defined subset similarity based solely on thallbgabstitution rate (i.e. we
used --weights “1, 0, 0, 0”), based on our analyses of the phylogenoragedaft birds
(Figure 2), and on the results of previous phylogenomic studiehdhatrelied on overall
substitution rates to combine subsets in partitioning schemes[28]y. We fixed the
proportion of partitioning schemes analysed by the relaxed dchgst@igorithm to 10% (i.e. -
-rcluster-percent 10), based on the observation that for the phylogedataset of birds this
cutoff represented a good balance between computational efficgéent performance. For
the same reasons, we defined default settings in PartitionFanderthat subset similarity is
based solely on the overall substitution rate (i.e. we used --weightd, 0, 0”), and the
proportion of partitioning schemes analysed by the relaxed clustering algasiftt$oi(i.e. --
rcluster-percent 10). While it is possible that these parametes idiosyncratic to the
phylogenomic bird dataset, our results below suggest that they prbodoadly similar
results across all of the datasets we have analysed. Footieerusing a single set of
parameters in the analyses of 10 datasets more accuratetysréiie likely behaviour of the
end users of these algorithms, who are unlikely to run thousands ofemntdydetermine the
best parameters for partitioning scheme selection. Thus, ussiggke set of parameters
represents the most useful basis for comparing the three thigsri We provide
recommendations for the use of each of these algorithms, based esuhe of all of our
analyses, in the Conclusions section at the end of this article.

The relaxed clustering algorithm found better partitioning scheheesthe strict clustering
algorithm on all 10 of the datasets we examined (Figure 3,eTapl For the relaxed
clustering algorithm, the mean improvement in AICc and BIC scaoeoss all 10 datasets



was 80% and 88% of the potential improvement estimated from theygedgdrithm
respectively (Figure 3, Table 2). For the strict clusteriggrdhm, the mean improvement in
AICc and BIC scores was 7% and 55% of the potential improvenstéimaged from the
greedy algorithm (Figure 3, Table 2).

Figure 3 The relaxed clustering algorithm outperforms the strict clustering agjorithm
across the 10 datasets shown in Table All scores are standardised by the score increase
achieved by the greedy algorithm (i.e. the score of the best partitiomi@medrom the
greedy algorithm minus the score of the starting scheme), so that peréeroan be
compared across datasets. Thus, the greedy algorithm always scoresrikd@shawn only
for reference. Each line connects the results from a single dataset, ttatimanthat in all
cases using both the AICc and the BIC, the greedy algorithm performed beslkaxiee
clustering algorithm (with 10% of schemes analysed) performed second best, dndtthe s
clustering algorithm performed the worst. All analyses use the RAXMLoreddi
PartitionFinder.

Table 2 AlCc and BIC scores of the best partitioning scheme found by differe
algorithms on each dataset

AlCc BIC
Dataset Greedy Relaxed Strict Greedy Relaxed Strict
clustering clustering clustering clustering
(AlCc) (AAICc) (AAICc) (BIC) (ABIC) (ABIC)

Ward_2010 103258 -34 -61 104877 -294 -606
Wainwright_2012 473537 -7 -59 477322 -73 -663
Pyron_2011 154838 -42 -173 156039 =177 -383
Li_2008 252583 -6 -242 254327 -183 -769
Leavitt_2013 424129 -216 =757 426143 -837 -3176
Kaffenberger 2011 120020 -6 =75 121452 -62 -150
Irisarri_2012 214655 -41 -187 216209 -152 -1151
Hackett 2008 1830824 -356 -1442 1837230 -964 -6362
Fong_2012 276517 -254 -1508 278400 -900 -2129
Endicott_2008 66966 -90 -479 70139 -455 -752

The greedy algorithm performed best in all cases, as expecedhe AICc/BIC score is shown for
each run with that algorithm. The relaxed clustering algoriypitally performed almost as well as
the greedy algorithm, and always performed better than theé dligtering algorithmAAICc or
ABIC scores are shown for the clustering algorithms, and représe difference in AICc or BIC
score from the greedy algorithm.

The computational efficiency of the strict and relaed clustering algorithms on
10 datasets

Both the relaxed clustering algorithm and the strict clustemhgprithm took less
computational time than the greedy algorithm, but the identitghef fastest algorithm
depended on the size of the dataset (Figure 4, Table 3). Bixedatlustering algorithm was
the fastest method for 6/10 datasets when using the AICc, and foratds@td when using
the BIC (Figure 4, Table 3). The datasets for which the edlatustering algorithm was
faster tended to be those with smaller numbers of data blocks. sAaloslatasets and
information theoretic scores, the relaxed clustering algorithishied in 11% of the time it
took the greedy algorithm to finish, and the strict clusteringrakgn finished in 9% of the



time it took the greedy algorithm to finish. But for the two émtgdatasets that we analysed
[43,44], the relaxed clustering algorithm finished in 9% of the tim®ok the greedy
algorithm to finish, and the strict clustering algorithm finishe@% of the time it took the
greedy algorithm to finish (Figure 4, Table 3).

Figure 4 The strict and relaxed clustering algorithms are computationally muchmore
efficient than the greedy algorithm.This figure shows the time taken by the relaxed and
strict hierarchical clustering algorithms on the 10 datasets shown in Tablatilzerto the
time taken by the greedy algorithm. All times are standardised byrtbgaken by the
greedy algorithm, so that performance can be compared across datasgtthd greedy
algorithm always scores 100%, and is shown only for reference. Each line connects the
results from a single dataset. The results show that the relaxed ctysigorithm (with

10% of schemes analysed) consistently takes about 10% of the time taken legtlye gr
algorithm, and that the strict hierarchical clustering algorithm tageeden around 1% to
20% of the time taken by the greedy algorithm, depending on the dataset. Aleanagshe
RAXML version of PartitionFinder.

Table 3Analysis times (seconds) of different algorithms on different datasgtand using
different information theoretic metrics to choose partitioning sclemes

AlCc BIC

Dataset Greedy Relaxed Strict Greedy Relaxed Strict

clustering clustering clustering clustering
Ward_2010 396 42 58 587 56 58
Wainwright_2012 3305 400 603 5664 568 603
Pyron_2011 602 58 74 790 73 74
Li_2008 1246 130 165 1557 194 165
Leavitt 2013 5829 843 288 7997 973 288
Kaffenberger_2011 580 78 104 877 102 104
Irisarri_2012 935 87 112 1172 134 112
Hackett_2008 102011 9536 3140130359 12686 3140
Fong_2012 10468 987 183 13961 1094 183
Endicott_2008 1947 189 126 2135 207 126

The two clustering algorithms are roughly an order of madgitfaster than the greedy
algorithm. Analyses were conducted on a Mac Pro with 2 2.26GHz Quadh@elreeon
processors and 32GB RAM.

These differences in the speed of the strict and relaxed rahgstdgorithms result from two
effects: search space and stopping conditions. The relaxed iclgsédgorithm analyses
many more partitioning schemes than the strict clusteriggrithm, which tends to make it
slower. However, the relaxed clustering algorithm stops whemtbrmation theoretic score
stops improving, whereas the strict clustering algorithm alwaggputes the likelihood of N
partitioning schemes for a dataset with N data blocks. The iateqdl these two effects
determines which algorithm will be quicker on any given data&khough the fastest
algorithm depends to some extent on the number of data blocks in thalgmirtitioning
scheme, a general rule of thumb is that the strict clustergagiddm will be quicker on very
large datasets, but will produce poorer results.



Conclusions

Partitioning is an important part of many phylogenetic analyaesl can dramatically
improve the fit of models to data for almost all datasets. Shpaiticularly true of very large
datasets, which contain more genomic regions, and thus more vaniatgsrand patterns of
molecular evolution than smaller datasets. As the analysis gflaeye datasets becomes
more common, methods to infer partitioning schemes need to keep pacewe tiaa make
the best possible inferences from the datasets we have.

In this study, we compared three methods for estimating partiti@muhgmes: an existing
greedy algorithm [2]; a strict hierarchical clustering Inoek which extends the work of Li et
al. [4]; and a relaxed hierarchical clustering method which exeldped here. Our results
allow us to make clear recommendations for those wishing to estimate partischemes.

Preference should always be given to using the greedy algoritRartiionFinder over the

two algorithms developed here [2]. The substantial improvements m&detitionFinder for

this study now permit the greedy algorithm to analyse degtabkat include up to 200 data
blocks on a desktop computer (although exact numbers will, of course, depéredsire of
each data block, the number of taxa in the alignment, and the contgeif¢r Many datasets
being collected today, however, contain hundreds or thousands of loci [23-25,44,49,50]. |
these cases, it would be computationally infeasible to use thdygedgorithm to select
partitioning schemes, and where possible the relaxed hierarchistdring algorithm should

be used instead.

When using the relaxed hierarchical clustering algorithm, theeptage of schemes analysed
at each step of the algorithm (—-rcluster-percent option ititiBaFinder) should be set as
high as practically possible. Determining what is practioald given dataset on a given
computer may require some trial and error, but we suggestuimsing the analysis using the
default setting of 10%. If this run finishes quickly, the percenshgelld be increased and the
analysis re-run. If it runs too slowly, the analysis can be alkacand re-started with a
smaller percentage. Subsequent runs will be much faster than tia ian, because
PartitionFinder saves and reloads the results of previous anabstesmining whether a
given percentage of schemes analysed will produce a partitioning scharaendar score to
the greedy algorithm may be possible by examining the resiulit least three runs of the
relaxed clustering algorithm using different percentages (e.g. one withatkiemum practical
percentage, one with a percentage of half maximum, and one wty &mall percentage).
This is because as the percentage of schemes analysedasendcrthe results of the relaxed
clustering algorithm will asymptotically approach those of thedyealgorithm (Figure 1).
Finally, if the percentage of schemes analysed is very lem, it may be prudent to perform
more than one run with different sets of clustering weights.

The strict hierarchical clustering algorithm should be used dnfnianalysis using the
relaxed hierarchical clustering algorithm is computationallyasitde. The strict hierarchical
clustering algorithm is still likely to provide large improvengeint the fit of the model to the
data when compared to not attempting to optimise the partitichgme, but it may be
sensible to try a number of different methods of defining subsdasimin order to ensure
the best possible results (——weights option in PartitionFinder, Fachamhe default is to
define subset similarity based solely on their rates of evolutkor).example, one option
would be to estimate partitioning schemes under all possible cononisati setting at least



one weight to 1.0, and other weights to 0.0. The best-fit partitioning scheuid then be
chosen from the set of 15 estimated partitioning schemes. Feticiy this set of 15
weights can be found in the Figshare repository that accompahiss paper
(http://dx.doi.org/10.6084/m9.figshare.938920).

In the future, it would be interesting to explore more complex [aréitl models of
molecular evolution. For example, our study considers only partitisehgmes in which
each subset of sites has an independent model of molecular evalatioalf other subsets.
This decision was results from the practical consideration kimaitid the only partitioned
model available in RAXML, the primary software for analysingtreamely large
phylogenomic datasets. However, the most recent version of othemuma-likelihood
phylogenetic software, PhyML [51], allows for different subdetsshare any number of
parameters with any number of other subsets. This hugely insrdss@umber of possible
partitioning schemes, and in particular it allows for complex nsode heterotachy to be
estimated. As a result, this approach is likely to allow fontgared models that dramatically
improve on those we can currently estimate using PartitionFinder.evéow searching
among the space of these possible partitioned models, and estirhatiogtimal model for
any given dataset, remains an unsolved problem.

Availability of supporting data

The data sets supporting the results of this article areablaiin the figShare repository,
http://dx.doi.org/10.6084/m9.figshare.938920 [52]. This repository contains all of the datasets
from Table 1, as well as the results of all analyses and the R scrippysediiice the figures

in this manuscript.

All of the methods we have developed and described here are availd®éetitionFinder
version 1.1.0. The source code for PartitionFinder is hosted at GitHub:
https://github.com/brettc/partitionfinder. Version 1.1.0 is available this link:
https://github.com/brettc/partitionfinder/archive/v1.1.0.tar.gz#, and is asthived in
Figshare at this link: http://dx.doi.org/10.6084/m9.figshare.939371. User-fridoginloads

of the latest version of PartitionFinder are available from:
www.robertlanfear.com/partitionfinder.
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